

UNIVERSIDAD LAICA "ELOY ALFARO" DE MANABÍ

FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA CIVIL

TESIS DE GRADO

Previa a la obtención del Título de

INGENIERO CIVIL

TEMA:

CARACTERIZACIÓN GEOTÉCNICA DE LOS SUELOS DISPERSIVOS Y COLAPSABLES DE MANTA, PARA SOLUCIONES EN OBRAS CIVILES Y VIALES.

AUTORES:

FAJARDO COBEÑA SHIRLEY MARIA VASQUEZ NARANJO LESLIE ELIZABETH

DIRECTOR DE TESIS

Ing. Javier Moreira Roca, Mg. Sc.

Manta - Manabí - Ecuador

2015

1. TEMA:

CARACTERIZACIÓN GEOTÉCNICA DE LOS SUELOS DISPERSIVOS Y COLAPSABLES DE MANTA, PARA SOLUCIONES EN OBRAS CIVILES Y VIALES.

CERTIFICACIÓN DEL TUTOR

Ing. Javier Moreira Roca, Mg. Sc. Docente de la Carrera de Ingeniería Civil de la Facultad de Ingeniería de la Universidad Laica Eloy Alfaro de Manabí.

CERTIFICA:

Que el presente Proyecto de Investigación Titulado "CARACTERIZACIÓN GEOTÉCNICA DE LOS SUELOS DISPERSIVOS Y COLAPSABLES DE MANTA, PARA SOLUCIONES EN OBRAS CIVILES Y VIALES", ha sido exhaustamente revisado.

Las opiniones y conceptos vertidos en este Proyecto de Investigación es fruto del trabajo, perseverancia y originalidad de las egresadas: Fajardo Cobeña Shirley María y Vásquez Naranjo Leslie Elizabeth, siendo de su exclusiva responsabilidad.

Ing. Javier Moreira Roca, Mg. Sc
TUTOR DE TESIS

DECLARACIÓN DE AUTORÍA

DECLARAMOS QUE:

El presente trabajo de investigación denominado "CARACTERIZACIÓN GEOTÉCNICA

DE LOS SUELOS DISPERSIVOS Y COLAPSABLES DE MANTA, PARA

SOLUCIONES EN OBRAS CIVILES Y VIALES" ha sido desarrollado en base a una

investigación adecuada, respetando los derechos de propiedad de terceros, aplicando las

respectivas citas y referencias en este documento. Consecuentemente este trabajo es de

nuestra autoría.

En virtud de esta declaración, nos responsabilizamos del contenido, veracidad y alcance

científico del proyecto de grado en mención.

Fajardo Cobeña Shirley María C.I. # 131165834-6

Vásquez Naranjo Leslie Elizabeth C.I. # 131207493-1

AGRADECIMIENTO

El presente trabajo de tesis primeramente te agradecemos a ti Dios por bendecirnos para llegar hasta donde hemos llegado, porque hiciste realidad este sueño anhelado.

A la UNIVERSIDAD LAICA ELOY ALFARO DE MANABI, por facilitarnos la oportunidad de estudiar y ser un profesional.

A nuestro director de tesis, Ing. Javier Moreira Roca, por su constante y paciente seguimiento y asistencia, compartiendo su tiempo de manera generosa durante el desarrollo del presente trabajo.

Vásquez Naranjo Leslie Elizabeth Fajardo Cobeña Shirley María

DEDICATORIA

Para triunfar en la vida no es importante llegar primero, para triunfar simplemente hay que llegar. Al culminar uno de mis objetivos la presente tesis a:

Mis padres, Walter Fajardo y María Cobeña Y sobre todo a mi esposo Jorge Pérez, por su comprensión y constante estimulo, recordándome que la perseverancia y el esfuerzo son el camino para lograr los objetivos.

Fajardo Cobeña Shirley María

DEDICATORIA

Este trabajo es dedicado a mis padres: Naranjo Factos Martha y Vásquez Morejón Sergio, quienes han estado conmigo en toda situación, sus consejos, palabras de ánimo, me ayudaron a no desistir en nada, a luchar con coraje y siempre anteponiendo la humildad; es por eso que hoy dedico este esfuerzo a ustedes que son la base fundamental para que pueda subir un escalón más en esta carrera que aún no termina.

A mis hermanas: Dafne Vásquez, dejó este legado como ejemplo de dedicación y superación, que sirva de espejo para que en un futuro, y Johanna Vásquez por su constante insistencia de progreso y superación.

Mi esposo: Danny Piguave Vera por su comprensión y constante estimulo, recordándome que la perseverancia siempre se llega al éxito.

Vásquez Naranjo Leslie Elizabeth

RESUMEN

El presente trabajo investigativo tiene como propósito caracterizar geotécnicamente los suelos dispersivos y colapsables de Manta, para soluciones en obras civiles y viales, determinando sus propiedades físicas y mecánicas con sus diferentes ensayos en el laboratorio y su comportamiento.

La dinámica de suelos es una disciplina relativamente prolija y necesita un mayor estudio dentro del ámbito de la construcción es de la mayor importancia en Manta ,debido a que esta ciudad crece espontáneamente y es privilegiada por estar ubicada en zona costera y debido a esto emprende un alto desarrollo turístico y poblacional.

Esta investigación se ha desarrollado mediante trabajo en campo, de laboratorio y documental, iniciando con toma de muestras de suelo para luego ser estudiadas mediantes ensayos de laboratorio, se elaboró un análisis en base a los resultados obtenidos, así como también conclusiones y recomendaciones.

ABSTRACT

This research work aims to characterize the dispersive geotechnical collapsible floors and Manta, for solutions in civil and road works, determining physical and mechanical with its various laboratory tests and their behavior properties.

The dynamics of soils is a relatively tedious discipline and needs further study in the field of construction is of the utmost importance in Manta, because this city grows spontaneously and is privileged to be located in coastal area and because of this begins a population and high tourism development.

This research was developed through fieldwork, laboratory and documentary, starting with taking of soil samples before being studied through laboratory tests, an analysis was developed based on the results obtained, as well as conclusions and recommend.

INDICE DE CONTENIDO

	PÁGINAS
INTRODUCCIÓN	1
PROBLEMA DE INVESTIGACIÓN	2
OBJETIVO GENERAL	4
OBJETIVO ESPECIFICO	
HIPOTESIS	5
1. CAPITULO I	
CARACTERIZACIÓN DEL SUELO	_
	PÁGINAS
1.1 Fundamentación Teórica	6
1.1.1 El Suelo	6
1.1.2 Composición del Suelo.	6
1.1.3 Diferentes Tipos de Suelos	8
1.1.4 Características del Suelo	10
1.1.5 Clasificación del Suelo	10
1.1.5.1 Clasificación según el sistema unificado de suelos (sucs)	12
1.1.6 Estados de consistencia del suelo	14
1.1.6.1 Clasificación de los depósitos sedimentarios del suelo	15
1.1.7 Suelos expansivos	23
1.1.8 Suelos colapsables	23
1.1.8.1Antecedentes.	23
1.1.8.2 Concepto.	24
1.1.8.3 Características de los suelos colapsables	26
1.1.8.4 Clases de depósitos.	27
1.1.8.4.1 Eólicos	27
1.1.8.4.2 Aluviales	28
1.1.8.4.3 Suelos residuales.	28
1.1.8.4.4 Suelos compactados	28
1.1.8.5 Consolidación de suelos	29
1.1.8.5.1 Definición	29
1.1.8.5.2 Proceso de consolidación	32
1.1.8.5.3 Consecuencia de la consolidación	32
1 1 8 5 4 Permeabilidad	32

1.1.8.5.5 Velocidad de asentamiento	
1.1.8.5.6 Suelos normalmente consolidados	
1.1.8.6 Método de identificación	
1.1.8.6.1 Método de campo	
1.1.9 Suelos dispersivos	
1.1.9.1 Concepto	
1.1.9.2 Identificación de los suelos dispersivos	
1.1.9.3 Tipos de ensayos de clasificación	
1.1.9.3.1 Ensayo de Crumb	
1.1.9.3.2 Ensayo doble hidrómetro	
1.1.9.3.3 Ensayo Pinhole test	
1.1.9.4 Muestras y ensayos realizados como ejemplos	
1.1.10 Incidencias de los suelos dispersivos y colapsables	
1.1.11 Soluciones técnicas ante presencia de suelos colapsables y dispersivos56	
2. CAPITULO II	
2. CAPITULO II	
ESTUDIO DE CAMPO	
	S
ESTUDIO DE CAMPO	S
ESTUDIO DE CAMPO PÁGINAS	
ESTUDIO DE CAMPO PÁGINAS 2.1 Antecedentes	
ESTUDIO DE CAMPO PÁGINAS 2.1 Antecedentes	
ESTUDIO DE CAMPO PÁGINAS 2.1 Antecedentes	
ESTUDIO DE CAMPO PÁGINAS 2.1 Antecedentes	
ESTUDIO DE CAMPO PÁGINAS 2.1 Antecedentes 61 2.2 Ubicación 61 2.3 Modalidad 61 2.4 Tipos de investigación 61 2.4.1 De campo 62	
ESTUDIO DE CAMPO 2.1 Antecedentes 61 2.2 Ubicación 61 2.3 Modalidad 61 2.4 Tipos de investigación 61 2.4.1 De campo 62 2.4.2 Investigación de laboratorio de suelos 62	2
ESTUDIO DE CAMPO 2.1 Antecedentes 61 2.2 Ubicación 61 2.3 Modalidad 61 2.4 Tipos de investigación 61 2.4.1 De campo 62 2.4.2 Investigación de laboratorio de suelos 62 2.5 Materiales y equipos 62	2
ESTUDIO DE CAMPO 2.1 Antecedentes 61 2.2 Ubicación 61 2.3 Modalidad 61 2.4 Tipos de investigación 61 2.4.1 De campo 62 2.4.2 Investigación de laboratorio de suelos 62 2.5 Materiales y equipos 62 2.5.1 Ensayos de laboratorio 62	2
ESTUDIO DE CAMPO 2.1 Antecedentes 61 2.2 Ubicación 61 2.3 Modalidad 61 2.4 Tipos de investigación 61 2.4.1 De campo 62 2.4.2 Investigación de laboratorio de suelos 62 2.5 Materiales y equipos 62 2.5.1 Ensayos de laboratorio 62 2.6 Toma de muestras 65	2 2 5 2 2
ESTUDIO DE CAMPO 2.1 Antecedentes .61 2.2 Ubicación .61 2.3 Modalidad .61 2.4 Tipos de investigación .61 2.4.1 De campo .62 2.4.2 Investigación de laboratorio de suelos .62 2.5 Materiales y equipos .62 2.5.1 Ensayos de laboratorio .62 2.6 Toma de muestras .65 2.7 Procedimiento de ensayos del laboratorio .72	2 2 2 5 2 2
ESTUDIO DE CAMPO 2.1 Antecedentes .61 2.2 Ubicación .61 2.3 Modalidad .61 2.4 Tipos de investigación .61 2.4.1 De campo .62 2.4.2 Investigación de laboratorio de suelos .62 2.5 Materiales y equipos .62 2.5.1 Ensayos de laboratorio .62 2.6 Toma de muestras .65 2.7 Procedimiento de ensayos del laboratorio .72 2.7.1 Ensayo humedad natural .72	2 2 2 2 2 3
ESTUDIO DE CAMPO 2.1 Antecedentes. 61 2.2 Ubicación. 61 2.3 Modalidad. 61 2.4 Tipos de investigación. 61 2.4.1 De campo. 62 2.4.2 Investigación de laboratorio de suelos. 62 2.5 Materiales y equipos. 62 2.5.1 Ensayos de laboratorio. 62 2.6 Toma de muestras. 65 2.7 Procedimiento de ensayos del laboratorio. 72 2.7.1 Ensayo humedad natural. 72 2.7.2 Ensayo de granulometría. 75	22 22 23 77
ESTUDIO DE CAMPO 2.1 Antecedentes 61 2.2 Ubicación 61 2.3 Modalidad 61 2.4 Tipos de investigación 61 2.4.1 De campo 62 2.4.2 Investigación de laboratorio de suelos 62 2.5 Materiales y equipos 62 2.5.1 Ensayos de laboratorio 62 2.6 Toma de muestras 65 2.7 Procedimiento de ensayos del laboratorio 72 2.7.1 Ensayo humedad natural 72 2.7.2 Ensayo de granulometría 75 2.7.3 Ensayos de plasticidad 77	2 2 2 5 7 7

2.7.4 Ensayo de peso específico81
2.7.5 Ensayo peso volumétrico
2.7.6 Ensayo de Crumb85
2.7.7 Ensayo pinhole test
2.7.8 Ensayo de doble hidrómetro
2.7.9 Ensayo metodológico90
2.7.9.1 Método del límite líquido90
3. CAPITULO III
ANÁLISIS DE LOS RESULTADOS OBTENIDOS EN CAMPO
PÁGINAS
3.1 Ensayo de humedad natural91
3.2 Ensayo de granulometría92
3.3 Ensayo de límite líquido93
3.4 Ensayo de límite plástico94
3.5 Ensayo de peso específico
3.6 Ensayo de peso volumétrico
3.7 Ensayo de Crumb96
3.8 Ensayo de pinhole test
3.9 Ensayo de doble hidrómetro
3.10 Ensayo metodológico e identificación de suelos colapsables99
CONCLUSIONES Y RECOMENDACIONES
CONCLUSIONES
RECOMENDACIONES
REFERENCIAS BIBLIOGRÁFICAS
ANEXOS

INDICE DE TABLAS

PAGINAS	1
Tabla 1.1: Fragmentos minerales del suelo	,
Tabla1.2: Propiedades del suelo según su composición8	
Tabla 1.3: Clasificación del suelo según su diámetro promedio de grano	,
Tabla 1.4: Identificación de los suelos colapsables)
Tabla 1.5: Clasificación de suelos colapsables en función de porcentajes de finos38)
Tabla 1.6: Clasificación de suelos colapsables en función del potencial de colapso39)
Tabla 1.7: Valores para determinar un suelo dispersivo50	
Tabla 1.8: Características de los suelos analizados	,
Tabla 1.9: Resultados de los ensayos de dispersión	,
Tabla 1.10: Condiciones favorables y no favorables de un suelo	
Tabla 2.11: Equipos utilizados en ensayos de humedad natural	
Tabla 2.12: Equipos utilizados en ensayos de granulometría	
Tabla 2.13: Equipos utilizados en ensayos de límite liquido	
Tabla 2.14: Equipos utilizados en ensayos de límite plástico	
Tabla 2.15: Equipos utilizados en ensayos de peso específico	
Tabla 2.16: Equipos utilizados en ensayos de peso volumétrico	
Tabla 2.17: Equipos utilizados en ensayos de pinole test	
Tabla 2.18: Equipos utilizados en ensayos de doble hidrómetro	
Tabla 2.19: Formato de cálculo contenido de humedad	ļ
Tabla 2.20: Formato de cálculo granulometría	
Tabla 2.21: Formato de cálculo Límite líquido y Limite plástico	
Tabla 3.22: Cálculos del porcentaje de humedad natural- Muestra 191	
Tabla 3.23: Cálculos del porcentaje de humedad natural – Muestra 991	
Tabla 3.24: Resultados de la granulometría- Muestra 1	
Tabla 3.25: Resultados de la granulometría- Muestra 9	
Tabla 3.26: Cálculos del límite líquido- Muestra 493	,
Tabla 3.27: Cálculos del límite plástico- Muestra 494	ŀ
Tabla 3.28: Cálculo de peso específico- Muestra 195	
Tabla 3.29: Cálculo de peso volumétrico- Muestra 196	
Tabla 3.30: Resultados del ensayo de Crumb96	
Tabla 3.31: Resultados del ensayo de pinole test- Muestra 1	
Tabla 3.32: Resultado del ensayo del doble hidrómetro- Muestra 198	

Tabla 3.33: Resultados del método del límite líquido	99

INDICE DE FIGURAS

	PAGINAS
Figura 1.0: Componentes del suelo.	6
Figura 1.1: Arcillas y limo agrietado	9
Figura 1.2: Arcilla y limo agrietado	9
Figura 1.3: Arcilla y limo agrietado	10
Figura 1.4: Sistema Unificado de clasificación de los suelos	13
Figura 1.5: Estados de consistencia del suelo	14
Figura 1.6: Depósito coluvial	16
Figura 1.7: Depósito aluvial	17
Figura 1.8: Depósito lacustre	18
Figura 1.9: Depósito litoral	19
Figura 1.10: Depósito glacial	20
Figura 1.11: Características de los depósitos de climas áridos y desérticos	21
Figura 1.12: Deposito clima tropical	23
Figura 1.13: Textura potencialmente colapsables	25
Figura 1.14: Partículas del suelo	31
Figura 1.15: Proceso de consolidación	32
Figura 1.16: Variación del volumen durante la consolidación	32
Figura 1.17: Pruebas índice para identificación de suelos colapsables	36
Figura 1.18: Criterio de recuperación para suelos expansivos y colapsables	37
Figura 1.19: Identificación de suelos colapsables	38
Figura 1.20: Falla por tubificación en una presa	41
Figura 1.21: Falla provocada por filtración del agua	41
Figura 1.22: Floculos formados en la superficie del agua	42
Figura 1.23: Floculos formados en la superficie del agua	42
Figura 1.24: Floculos formados en la superficie del agua	43
Figura 1.25: Porcentaje de dispersión	44
Figura 1.26: Equipo utilizado en ensayo de doble hidrómetro	44
Figura 1.27: Piezas del molde donde es colocado es espécimen para realizar	el ensayo
	46
Figura 1 28: Piezas del equipo para compactar	47

Figura 1.29: Equipo de pinole test	47
Figura 1.30: Porcentaje de dispersión.	50
Figura 2.31: Zonas donde se obtuvieron las muestras	61
Figura 2.32: Toma de muestras en la vía interbarrial.	65
Figura 2.33: Toma de muestras en coliseo tohalli	66
Figura 2.34: Toma de muestras en la vía la cultura – interbarrios	66
Figura 2.35: Toma de muestras en la gasolinera primax	67
Figura 2.36: Toma de muestras en el conector vía circunvalación – san mateo	67
Figura 2.37: Toma de muestras en la llegada a san mateo	68
Figura 2.38: Toma de muestras en la zona Santiago Arauz	68
Figura 2.39: Toma de muestras en san mateo Unidad Educativa Riobamba	69
Figura 2.40: Toma de muestras al lado del puente	69
Figura 2.41: Toma de muestras en la vía Rocafuerte	70
Figura 2.42: Toma de muestras en muelle jaramijó	70
Figura 2.43: Toma de muestras en la nueva carretera de la refinería	71
Figura 2.44: Toma de muestras en el sector la fabril- Indumaster	71
Figura 2.45: Pesado y secado del material	72
Figura 2.46: Secado del material.	73
Figura 2.47: Anotación del peso del material.	73
Figura 2.48: Secado de muestra.	75
Figura 2.49: Lavado del material.	75
Figura 2.50 Tamices utilizados.	76
Figura 2.51: Tamizado y material homogenizado en casa grande	77
Figura 2.52: Material colocado en casa grande	77
Figura 2.53: Material colocado en vasos de aluminio	78
Figura 2.54: Material enrollado.	79
Figura 2.55: Material pesado en balanza digital	80
Figura 2.56: Pesado de probeta en balanza digital	81
Figura 2.57: Dando ligeros movimientos al material.	82
Figura 2.58: Pesando la probeta con el material	82
Figura 2.59: Pesando los terrones.	83
Figura 2.60: Derritiendo la parafina y envolviendo los terrones con parafina	83
Figura 2.61: Sumergiendo los terrones en agua	84
Figura 2.62: Material hidratado	85

Figura 2.63: Material y equipos	36
Figura 2.64: Compactación del espécimen	37
Figura 2.65: Perforación del espécimen	87
Figura 2.66: Mallas y elementos de ajuste	87
Figura 2.67: Dispositivo de Pinhole test	38
Figura 3.68: Porcentaje de humedad	93
Figura 3.69: Carta de plasticidad	95

INTRODUCCIÓN

La Geotecnia es la rama de la ingeniería que se ocupa de la interacción de las construcciones en el terreno. Se trata no solo de una disciplina de Ingeniería Civil, sino también de otras actividades, como la Arquitectura y la Ingeniería Minera, que guardan relación directa con el terreno.

Usualmente, el ingeniero geotécnico se ocupa de estudiar solo los materiales naturales que se encuentren en o cerca de la superficie de la tierra. Los ingenieros civiles denominan a estos materiales térreos como suelo o roca.

En este estudio investigativo tiene como objetivo principal caracterizar geotécnicamente los suelos dispersivos y colapsables de Manta.

Este proyecto de investigación está compuesto de tres capítulos que se detallan a continuación.

En el Capítulo I está el Marco Teórico, cuyas teorías sustentan las variables de investigación, se detallan las respectivas fundamentaciones de autores de libros, textos y otros documentos relevantes al tema de estudio.

En el Capítulo II se describe el estudio de campo, análisis del sitio, ensayos de laboratorio, formulas, cálculos y demás características necesarias para obtener resultados que nos lleve a un análisis.

En el Capítulo III se detallan los resultados y su respectivo análisis en base a los ensayos realizados y a los datos que se obtuvieron. Finalmente, se muestran la bibliografía y anexos.

Problema de Investigación

Antecedente y Justificación del Problema

En el medio ante el desconocimiento del comportamiento geotécnico de suelos dispersivos y colapsables, se vienen ejecutando proyectos que si bien es cierto a corto plazo no generan preocupación, estas obras si están sobre estos tipos de suelos, dicho efecto no se presentaran hasta que no halla la presencia de agua, que es la que generaría cierto grado de incertidumbre de estabilidad y por ende se podría decir que existe cierto grado de riego.

En general en todo el mundo, las arcillas expansivas ocasionan daños importantes a las obras tales como: viviendas, pavimentos, etc., lo que ocasiona grandes erogaciones de dinero.

Prácticamente todas las estructuras de ingeniería como edificios, puentes, carreteras, túneles, muros, torres, canales o presas, deben cimentarse sobre la superficie de la tierra o dentro de ella. Para que la estructura se comporte satisfactoriamente debe poseer una cimentación adecuada; lo anterior se refiere a que debe tener seguridad contra la aparición de cualquier falla posible (Lambe, 1996).

Los suelos dispersivos no se identifican con una categorización visual del mismo o con simples ensayo índice de laboratorio, para esto existen ensayos especiales, tantos físicos como químicos.

Los suelos colapsables se caracterizan por humedecimiento. En esta clase particular de suelos meta-estables, el agente externo que desencadena el fenómeno de colapso, es el agua. En estos suelos un incremento de humedad puede provocar una disminución o anulación de las fuerzas que vinculan unas partículas con otras, y por lo tanto cambiar el estado de equilibrio en la estructura del suelo.

En cuanto a los tipos de métodos de identificación propiamente dichos, varios han sido los enfoques que se han propuesto. Estos podrían clasificarse en tres grupos:

Métodos basados en parámetros físicos de identificación de suelos, tales como:

Peso Unitario, Límites de Consistencia, Granulometría, etc.

Métodos basados en ensayos mecánicos, principalmente en ensayos edométricos.

Métodos basados en la magnitud del colapso.

Problema Científico

La presente disertación analiza el comportamiento de los suelos colapsables y dispersivos.

Objeto.

Se busca analizar las propiedades físicas y mecánicas de dichos suelos, buscando su caracterización, para en caso de tener resultados positivos, aplicar soluciones y evitar posibles daños a las estructuras que sobre dicho suelos se asientan, logrando así evitar reparaciones y perdidas económicas.

OBJETIVOS DE LA INVESTIGACION

Objetivo General

Analizar los suelos dispersivos y colapsables, determinando sus propiedades geotécnicas con sus diferentes ensayos en el laboratorio y su comportamiento.

Objetivos Específicos

- * Evaluar los parámetros geotécnicos para suelos dispersivos y colapsables.
- Buscar las incidencias de los suelos dispersivos y colapsables en obras civiles y viales.
- Analizar las diferentes soluciones técnicas ante la presencia de suelos dispersivos y colapsables para soluciones en obras civiles y viales.
- Zonificación parcial de una determinada área en el sector urbano no desarrollado de la cuidad de Manta.

HIPOTESIS

Saber identificar los tipos de suelos que no pueden dar un resultado a simple vista y saberlos tratar al momento de un colapso o una dispersidad de los mismos.

VARIABLES

Variable Independiente

Las propiedades físicas de material recopilado en la zona de estudio.

Variable Dependiente

Caracterización de los suelos colapsables y suelos dispersivos.

CAPÍTULO I

1. CARACTERIZACION DEL SUELO

1.1 FUNDAMENTACIÓN TEÓRICA

1.1.1 EL SUELO

Se conoce como suelo la parte superficial de la corteza terrestre, conformada por minerales y partículas orgánicas producidas por la acción combinada del viento, el agua y procesos de desintegración orgánica. Los suelos no siempre son iguales, cambian de un lugar a otro por razones climáticas y ambientales, de igual forma los suelos cambian su estructura, estas variaciones son lentas y graduales excepto las originadas por desastres naturales. (Hector & Caribe, 2011).

La definición de suelo depende del área de interés que se involucra con él. Desde una visión geotécnica, es el material sin consolidar que se encuentra sobre el lecho rocoso. Para la ingeniería civil es el material sobre el que se construye y excava, siendo sus propiedades determinantes para el tipo y características de la obra a construirse. (M.E, 2013).

1.1.2 COMPOSICIÓN DEL SUELO

"El suelo es un sistema heterogéneo y poroso, compuesto por partículas muy pequeñas e independientes, cuyo arreglo determina el volumen del espacio poroso, en el cual se transmite o se retienen el agua y el aire. La separación entre partículas está relacionada con su tamaño. Los suelos se dividen en 3 grupos dependiendo del diámetro promedio de partícula". (Zamora & Cristancho, 2008)

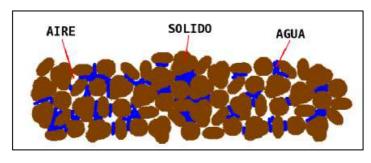


Figura #1.0: Componentes del suelo

Fuente: (Avenza, 2013)

Los autores: (Zamora & Cristancho, 2008), mencionan que el suelo está compuesto de partículas muy pequeñas, las cuales determinan la capacidad que tiene el suelo para transportar o retener el aire o el agua.

En el suelo encontramos materiales procedentes de la roca madre fuertemente alterados, seres vivos y materiales descompuestos procedentes de ellos. Las múltiples transformaciones físicas y químicas que el suelo sufre en su proceso de formación llevan a unos mismos productos finales característicos en todo tipo de suelos: arcillas, hidróxidos, ácidos húmicos, etc.; sin que tenga gran influencia el material originario del que el suelo se ha formado. (Echarri, 1999)

Tabla 1.1: Fragmentos minerales del suelo.

pedruscos	> 256 mm
guijarros	64 a 256 mm
grava	4 a 64 mm
gravilla	2 a 4 mm
arena gruesa	1 a 2 mm
arena	0.2 a 2 mm
arena fina	0.02 a 0.2 mm
limo	0.002 a 0.02 mm
arcilla	< 0.002 mm

Fuente: (Echarri, 1999)

Respecto a su naturaleza química, en principio parecería que no debe haber relación entre tamaño y composición química, pero en un suelo medianamente maduro, se ve que, como resultado de los procesos de formación que originan el suelo, la fracción de las arcillas está formada, principalmente, por silicatos con aluminio y hierro (caolinita, etc.) y las arenas son, sobre todo granos de cuarzo con algunas micas.

El pequeño tamaño de los granos de arcilla hace que esta fracción del suelo tenga una gran superficie por unidad de masa (1 g de arcilla suma de 25 a 900 m2 de superficie). Esto tiene importantes consecuencias porque facilita fenómenos que necesitan una gran superficie para producirse, como absorciones, algunas reacciones químicas, retención de agua, etc. Otra propiedad característica de la arcilla es que fluye cuando se encuentra

sometida a presión por lo que las laderas arcillosas tienen deslizamientos con facilidad. (Echarri, 1999)

Tabla 1.2: Propiedades del suelo según su composición

	arenoso	arcilloso	calizo
Permeabilidad	alta	nula	media
Amacenamiento de agua	росо	mucho	poco
Aireación	buena	mala	buena
Nutrientes	pocos	muchos	mucho calcio

Fuente: (Zamora & Cristancho, 2008)

Tabla 1.3. Clasificación del suelo según su diámetro promedio de grano

Suelo	Diámetro de grano (mm)
Arena muy gruesa	2.00 - 1.00
Arena gruesa	1.00 - 0.50
Arena media	0.50 - 0.25
Arena fina	0.25 - 0.10
Arena muy fina	0.01 - 0.05
Limo	0.05 - 0.002
Arcilla	Menores a 0.002

Fuente: (Zamora & Cristancho, 2008)

1.1.3 DIFERENTES TIPOS DE SUELO

<u>Según</u> sus características los autores Thorp, Baldwin y Kellog (1938,1949). Distingue tres órdenes: suelos zonales, intrazonales y azonales, y, en cada uno de ellos, subórdenes y grupos. En esta clasificación se basan las más utilizadas tradicionalmente.

Para comprender más acerca de los componentes del suelo, es necesario que se piense en la capacidad de absorción y la retención del agua.

Según su funcionalidad son:

- Arcilla: Con un tamaño inferior a 0,002 mm, es muy compacto, retiene mucha agua y transpira poco, pasando de muy seco a muy húmedo.
- **Limo:** Con un tamaño entre los 0,02 mm y los 0,002 mm, son sedimentos transportados por el agua o por el viento y es un material muy permeable. (Avenza, 2013, p.2)

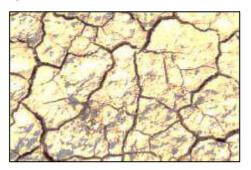


Figura # 1 1: Arcilla y limo agrietado Fuente: (Avenza, 2013)

■ Arena: Al ser un elemento suelto no retiene nada de agua, tiene muy poca tenacidad y más permeabilidad que el limo. En ella se puede diferenciar la arena fina, con un tamaño comprendido entre 0,2 mm y 0,02 mm, y la arena gruesa cuyo tamaño está entre 2 mm y 0,2 mm. Avenza, 2013, p.2)

Figura #1.2: Arcilla y limo agrietado Fuente: (Avenza, 2013)

■ **Grava:** Son piedras de diferente tamaño, entre los 2 mm y los 60 mm. Tiene las mismas propiedades que la arena, pero aún más permeable.

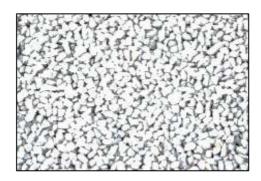


Figura #1.3: Arcilla y limo agrietado

Fuente: (Avenza, 2013)

Es decir, la capacidad de absorción y la retención del agua están muy relacionadas con la porosidad y la permeabilidad. La porosidad, es la cantidad de poros que componen el suelo, por donde es más fácil el transporte del agua y el aire; la permeabilidad es la capacidad del suelo para que ingrese aire y agua en su interior.

1.1.4. CARACTERÍSTICAS DEL SUELO

De acuerdo a las investigaciones observadas, se conoce que los suelos se caracterizan por los siguientes aspectos:

- Los suelos están formados por partículas pequeñas (desde micras a algunos centímetros) e individualizadas que puede considerarse indeformables.
- Entre estas partículas quedan huecos con un volumen total del orden de magnitud del volumen ocupado por ellas (desde la mitad a varias veces superior).
- Un suelo es un sistema multifase (sólida, liquida, gaseosa).
- Los huecos pueden estar llenos de agua (suelos saturados) o con aire y agua (suelos semisaturados), lo que condiciona la respuesta de conjunto del material. En condiciones normales de presión y temperatura, el agua se considera incomprensible. (Muelas, 2012, p. 5)

1.1.5. CLASIFICACIÓN DE LOS SUELOS

A continuación se presentan los principales tipos de suelos que son utilizados por los ingenieros civiles:

Gravas

Las gravas son acumulaciones sueltas de fragmentos de rocas y que tienen más de dos milímetros de diámetro. Dado el origen, cuando son acarreadas por las aguas las gravas sufren desgaste en sus aristas y son, por lo tanto, redondeadas. Como material suelto suele encontrársele en los lechos, en las márgenes y en los conos de deyección de los ríos, también en muchas depresiones de terrenos rellenados por el acarreo de los ríos y muchos otros lugares a los cuales las gravas han sido retransportadas. Sus partículas varían desde 7062 cm (3") hasta 2.0 mm. (Villalaz, 2004, p. 21)

Arenas

"Es el nombre que se le da a los materiales de granos finos procedentes de la denudación de las rocas o de su trituración artificial, y cuyas partículas varían entre 2 mm y 0.05 mm de diámetro. El origen y la existencia de las arenas es análoga a la de las gravas: las dos suelen encontrarse juntas en el mismo depósito. La arena de río contiene muy a menudo proporciones relativamente grandes de grava y arcilla. Las arenas estando limpias no se contraen al secarse, no son plásticas, son mucho menos comprensibles que la arcilla y si se aplica una carga en su superficie, se comprimen casi de manera instantánea". (Villalaz, 2004, p. 22)

Limos

"Son suelos de granos finos con poca o ninguna plasticidad, pudiendo ser limo inorgánico como el producido en canteras, o limo orgánico como el que suele encontrarse en los ríos, siendo en este último caso de características plásticas. El diámetro de las partículas de los limos está comprendido entre 0.05 mm y 0.005 mm. Los limos sueltos y saturados son completamente inadecuados para soportar cargas por medio de zapatas. Su color varía claro a muy oscuro. La permeabilidad de los limos orgánicos es muy baja y su comprensibilidad muy alta". (Villalaz, 2004, p. 22)

Arcillas

"Se da el nombre de acilla a las partículas sólidas con diámetro menos de 0.005 mm y cuya masa tiene la propiedad de volverse plástica al ser mezclada con agua. Químicamente es un silicato de alúmina hidratado, aunque en no pocas ocasiones contiene también silicatos de hierro o de magnesio hidratados. La estructura de estos minerales es, generalmente cristalina y complicada, y sus átomos están dispuestos en forma laminar. Algunas entidades consideran como arcillas a las partículas menores a 0.002 mm". (Villalaz, 2004, p. 22)

Loess

"Son sedimentos eólicos uniformes y cohesivos. Esta cohesión que poseen es debida a un cementante del tipo calcáreo y cuyo color es generalmente castaño claro. El diámetros de las partículas de los loess está comprendido entre 0.01 mm y 0.05 mm. Se distinguen porque presentan agujeros verticales que han sido dejados por raíces extinguidas. Los loess son colapsables, aunque disminuye dicha tendencia al incrementársele su peso volumétrico". (Villalaz, 2004, p. 25)

1.1.5.1.Clasificación según el Sistema Unificado de Clasificación de Suelos (SUSC)

El autor del sistema de clasificación fue realizado por el ingeniero civil Arthur Casagrande, quien realizó estudio acerca del comportamiento de los suelos y creó diversas técnicas de clasificación de los mismos. Utilizó el siguiente sistema de clasificación propuesto en el año de 1942 como base de referencia para aeropuertos. Menciona (Crespo, 2004, p.88) que "Los suelos de partículas gruesas y los suelos de partículas finas se distinguen mediante el cribado del material por la malla No 200. Los suelos gruesos corresponden a los retenidos en dicha malla y los finos a los que la pasan, y así el suelo se considera grueso si más del 50% de las partículas del mismo son retenidas en la malla No 200, y fino si más del 50% de sus partículas son menores a dicha malla".

Sistema USCS de Clasificacion de Suelos

IDENTIFICACION EN EL CAMPO						SIMBOLO DEL GRUPO	NOMBRES TIPICOS	CRITERIOS DE CLASIFICACION EN EL LABORATORIO	
DE GRANO GRUESO - MAS DE LA MITAD DEL RIAL ES RETENIDO POR EL TAMIZ # 200	MITAD DE ESA ES AMIZ # 4	GRAVAS LIMPIAS (CON POCOS FINOS O SIN ELLOS)		AMA DE TAMAÑOS Y C BLES DE TODOS LOS INTERMEDIOS		GW	GRAVA BIEN GRADUADA, MEZCLA DE GRAVA Y ARENA CON POCOS FINOS O SIN ELLOS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	GRU EL T			UN TAMAÑO O UN TIPO E ALGUNOS TAMAÑOS		GP	GRAVAS MAL GRADUADAS, MEZCLAS DE ARENA Y GRAVA CON POCOS FINOS O SIN ELLOS	O O O O O O O O O O O O O O O O O O O	
	- MAS ACCIO DA PO	GRAVAS CON FINOS (CANTIDAD APRECIABLE DE FINOS)		NO PLASTICA (PARA LI EL GRUPO ML, MAS AI		GM	GRAVAS LIMOSAS, MEZCLAS MAL GRADUADAS DE GRAVA, ARENA Y LIMO	NEW YORK OF THE PORT OF THE PO	
	GRAVAS LA FR RETENI	GRAV, FINOS (C APRE DE F		TICOS (PARA IDENTIF L GRUPO CL MAS ABAI		GC	GRAVAS ARCILLOSAS, MEZCLAS MAL GRADUADAS DE GRAVA, ARENA Y ARCILLA	POR DEBAIO DE LA LINEA A', CON IP ENTRE CASO LIMÍTES SIMBOLOS DOBI	
	MITAD DE SA PASA # 4	ARENAS LIMPIAS (CON POCOS FINOS O SIN ELLOS)		TAMAÑOS Y CANTIDAD LOS TAMAÑOS INTER		sw	ARENAS BIEN GRADUADAS, ARENAS CON GRAVA, CON POCOS FINOS O SIN ELLOS	$C_v = \frac{D_{to}}{D_{to}} \text{MAYOR DE 6} \; ; \; C_c = \frac{(D_{to})^2}{D_{to} \times D_{to}} \; \text{ENTR}$	
	DE LA MI GRUESA FAMIZ # 4	ARENAS (CON FIN SIN E		UN TAMAÑO O UN TIPO E ALGUNOS TAMAÑOS		SP	ARENAS MAL GRADUADAS, ARENAS CON GRAVA, CON POCOS FINOS O SIN ELLOS	NO SATISFACEN TODOS LOS REQUISITOS GRANULOMETRICOS DE LAS SW	
SUELOS DE GR MATERIAL	NAS - MAS DE LA I A FRACCION GRUES POR EL TAMIZ #	RENAS CON FINO (CANTIDAD APRECIABLE DE FINOS)	FINOS NO PLA	ASTICOS (PARA IDENT L GRUPO ML MAS ABA)	IFICACION VER	SM	ARENAS LIMOSAS, MEZCLAS DE ARENA Y LIMO MAL GRADUADAS	GRANULOMETRICOS DE LAS SW GRANULOMETRICOS DE LAS SW WILLE COS DE LAS SW GRANULOMETRICOS DE LAS SW WILL CAS SW WILL CA	
ง	ARENAS CO (CANT) APPLIANCE OF PARENAS CO (CANT) APPLIANCE OF P			TICOS (PARA IDENTIF L GRUPO CL MAS ABAI		sc	ARENAS ARCILLOSAS, MEZCLAS MAL GRADUADAS DE ARENAS O ARCILLAS	CASOS LIMITES LIMITES DE ATTERBERG REQUIEREN EL US SIMBOLOS DOBI "A" O Ip MAYOR QUE 7	
	METODOS DE IDENTIFICACION PARA LA FRACCION QUE PASA POR EL TAMIZ # 40								
ID DEL	LIMOS Y ARCILLAS CON LIMITE LIQUIDO MENOR DE SO		RESISTENCIA EN ESTADO SECO (A LA DISGREGACION)	DILATANCIA (REACCION A LA AGITACION)	TENACIDAD (CONSISTENCIA CERCA DEL LIMITE PLASTICO)			LINEA A: Ip = 0.73(WL - 20)	
LA MITAD IZ # 200			NULA A LIGERA	RAPIDA A LENTA	NULA	ML LIMOS INORGANICOS Y ARENAS MUY FINAS, POLVO DE ROCA, ARENAS FINAS LIMOSAS O ARCILLAS CON LIGERA PLASTICIDAD	TOMPARANDO CON SUELOS CON EL MISMO LIMITE LIQUIDO CH LINEA A		
SUELOS DE GRANO FINO - MAS DE LA MATERIAL PASA POR EL TAMIZ	E A A SO	OS Y ARCILLAS CON LIQUIDO MENOR DE	MEDIA A ALTA	NULA A MUY LENTA	MEDIA	CL	ARCILLAS INORGANICAS DE PLASTICIDAD BAJA A MEDIA, ARCILLAS CON GRAVA, ARCILLAS ARENOSAS, ARCILLAS LIMOSAS, ARCILLAS MAGRAS	GRANULOMETRICA PARA IDE	
		Ē	LIGERA A MEDIA	LENTA	LIGERA	OL	LIMOS ORGANICOS Y ARCILLAS LIMOSAS ORGANICAS DE BAJA PLASTICIDAD	INDICT OLOME	
	LIMOS Y ARCILLAS	CILLAS	. 1QUIDO E 50	LIGERA A MEDIA	LENTA A NULA .	LIGERA A MEDIA	мн	LIMOS INORGANICOS, SUELOS LIMOSOS O ARENOSOS FINOS MICACEOS O CON DIATOMEAS, LIMOS ELASTICOS	§ 0 10 20 30 40 50 60 70 80 90 10
		CON LIMITE LIQUIDO MAYOR DE 50	ALTA A MUY ALTA	NULA	ALTA	CH ARCILLAS INORGANICAS DE PALSTICIDAD ELEVADA, ARCILLAS GRASAS		LIMITE LIQUIDO	
S	LIM	CON	MEDIA A ALTA	NULA A MUY LENTA	LIGERA A MEDIA	он	ARCILLAS ORGANICAS DE PLASTICIDAD MEDIA A ALTA	GRAFICO DE PLASTICIDAD PARA LA CLASIFICACION	
SUI	ORGANI			PENTIFICABLES POR SI PONJOSA Y FRECUENT TEXTURA FIBROSA		Pt	TURBA Y OTROS SUELOS ALTAMENTE ORGANICOS	LABORATORIO DE SUELOS DE GRANO FINO	

Figura # 1.4: Sistema Unificado de clasificación de los suelos (S.U.C.S.) Fuente (Crespo, 2004)

1.1.6. ESTADOS DE CONSISTENCIA DEL SUELO

El suelo está influenciado por la presencia de agua. Frente a este indicador, resulta útil estudiar los estados de consistencia del suelo, los que se presentan de acuerdo a su grado de humedad: líquido, plástico, semisólido y sólido.

- Líquido: "La presencia de una cantidad excesiva de agua anula las fuerzas de atracción interarticular que mantenían unido al suelo (cohesión) y lo convierte en una papilla, un líquido viscoso sin capacidad resistente." (Bañon & Bevia, 2001, p. 9)
- **Plástico:** "El suelo es fácilmente moldeable, presentando grandes deformaciones con la aplicación de esfuerzos pequeños. Su comportamiento es plástico, por lo que no recupera su estado inicial una vez cesado el esfuerzo. No es apto para resistir cargas adicionales" (Bañon & Bevía, 2001, p. 9)
- Semisólido: "El suelo deja de ser moldeable, pues se quiebra y resquebraja antes de cambiar de forma. No obstante, no es un sólido puro, ya que disminuye de volumen si continúa perdiendo agua. Comportamiento mecánico aceptable. (Bañon & Bevía, 2001, p. 9)
- **Sólido:** "En este estado el suelo alcanza la estabilidad, ya que en su volumen no varía con los cambios de humedad. El comportamiento mecánico es óptimo". (Bañon & Bevía, 2001, p. 9)

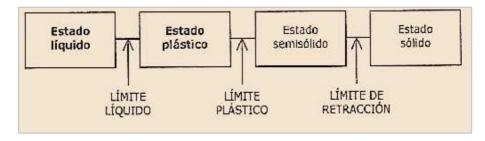


Figura #1.5: Estados de consistencia del suelo

Fuente: (Bañon & Bevía, 2001)

1.1.6.1. Clasificación de los depósitos sedimentarios del suelo.

Los depósitos sedimentarios se forman por la acción de los procesos geomorfológicos y climáticos, debido principalmente al medio de transporte y a la meteorización. Los distintos medios de sedimentación originan una serie de depósitos cuyas características están relacionadas con las condiciones de formación de estos sedimentos. Así, la clasificación de los materiales, granulometría, forma y tamaño, dependen del medio de transporte. Conociendo los factores geomorfológicos y climáticos, es posible prever la disposición y geometría del depósito, propiedades físicas y otros aspectos de interés. (P.A.Ck, 2010)

En función de las relaciones geológicas de los depósitos sedimentarios, estos se clasifican:

- 1-Depósitos coluviales.
- 2-Depósitos aluviales.
- 3-Depósitos lacustres.
- 4-Depósitos litorales.
- 5-Depósitos glaciares.
- 6-Depósitos de climas áridos y desérticos.
- 7-Depósitos evaporíticos.
- 8-Depósitos de climas tropicales.
- 9-Depósitos de origen volcánico.

Depósitos coluviales:

Son materiales transportados por gravedad, la acción del hielo – deshielo y, principalmente, por el agua. Su origen es local, producto de la alteración in situ de las rocas y posterior transporte como derrubios de ladera ó depósitos de solifluxión.

Frecuentemente están asociados a masas inestables. Su composición depende de la roca de la que proceden, estando formados por fragmentos angulares y heterométricos, generalmente de tamaño grueso, englobados en una matriz limo arcillosa. Su espesor suele ser escaso, aunque puede ser muy variable.

La resistencia de estos materiales es baja, sobre todo en la zona de contacto con el sustrato rocoso, y cuando se desarrollan altas presiones intersticiales como consecuencia de lluvias intensas. (P.A.Ck, 2010)

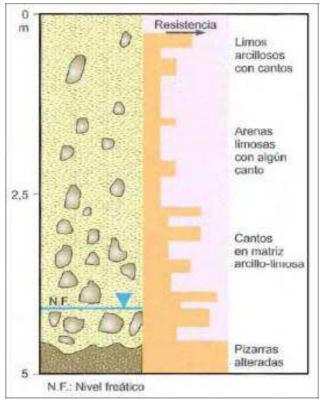


Figura # 1.6: Deposito Coluvial

Fuente: (P.A.Ck, 2010)

Depósitos aluviales:

Son materiales transportados y depositados por el agua. Su tamaño varía desde la arcilla hasta las gravas gruesas, cantos y bloques. Las facies más gruesas presentan bordes redondeados. Se distribuyen en forma estratiforme, con cierta clasificación, variando mucho su densidad. Están muy desarrollados en los climas templados, ocupando cauces y valles fluviales, llanuras y abanicos aluviales, terrazas y paleo cauces.

Son suelos muy aniso trópicos en su distribución, sus propiedades están estrechamente relacionadas con la granulometría. Su continuidad es irregular, pudiendo tener altos contenidos en materia orgánica en determinados medios. La permeabilidad depende de la granulometría y generalmente presentan un nivel freático alto. Los depósitos

aluviales constituyen una fuente de recursos de materiales de construcción, sobre todo como áridos. (P.A.Ck, 2010).

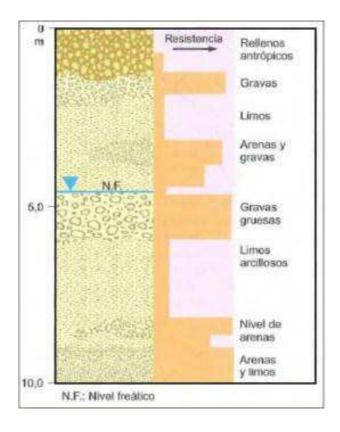


Figura #1.7: Deposito Aluvial

Fuente: (P.A.Ck, 2010)

Depósitos lacustres:

En general son sedimentos de grano fino, predominando los limos y las arcillas. El contenido de materia orgánica puede ser muy alto, sobre todo en zonas pantanosas. Frecuentemente presentan estructuras laminadas en niveles muy finos. En condiciones de agua salada se forman precipitados de sales.

Las principales propiedades están en relación a su alto contenido en materia orgánica, siendo en general suelos muy blandos. También se pueden encontrar arcillas asociadas a estos suelos. (P.A.Ck, 2010).

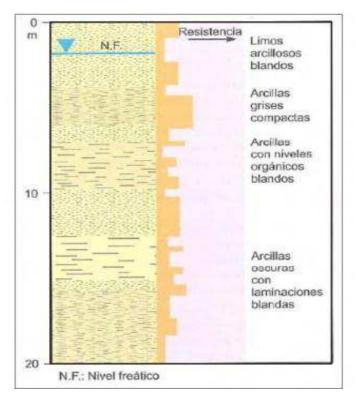


Figura # 1.8: Deposito Lacustre

Fuente: (P.A.Ck, 2010)

Depósitos litorales:

Son materiales formados en la zona intermareal por la acción mixta de ambientes continentales y marinos, influyendo en este caso las corrientes fluviales, el oleaje y las mareas. Predominan las arenas finas y los limos, pudiendo contener abundante materia orgánica y carbonatos. Los sedimentos más finos, los fangos y la materia orgánica son característicos de las zonas de delta y estuario.

En general, la consistencia de materiales es blanda a muy blanda y muy aniso trópica.

Pueden presentar encostramientos, pero la característica principal es su alta compresibilidad.

Otro tipo de depósitos característicos de las zonas litorales son las dunas, con carácter inestable debido a su movilidad. (P.A.Ck, 2010)

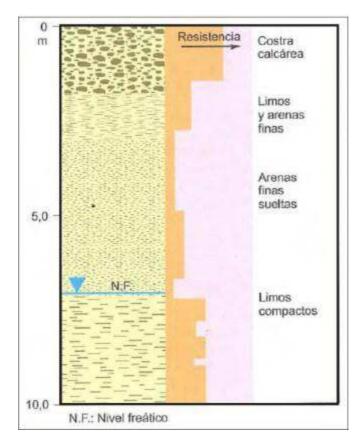


Figura # 1.9: Deposito litoral

Fuente: (P.A.Ck, 2010)

Depósitos glaciares:

Son depósitos transportados y depositados por el hielo o por el agua de deshielo. Están formados por tillitas y morrenas. Su composición es muy heterométrica y la distribución es altamente errática. Los depósitos fluvio-glaciares contienen fracciones desde gravas gruesas a arcillas; están algo clasificadas y su granulometría decrece con la distancia frente al glaciar. Sin embargo, los de origen lacustre-glaciar presentan fracciones más finas, predominando las arcillas y las estructuras laminadas, típicas de las arcillas barbadas.

La heterogeneidad y anisotropía es la característica típica de estos depósitos, pues coexisten desde las arcillas hasta las gravas gruesas y grandes bloques. Al estar la permeabilidad directamente relacionada con la granulometría, estos suelos son muy sensibles a los incrementos de presión intersticial producidos por las lluvias torrenciales

y por el deshielo. En estos depósitos son muy frecuentes los fenómenos de solifluxión y de inestabilidad de laderas. (P.A.Ck, 2010)

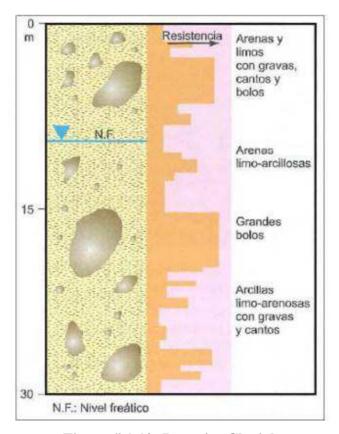


Figura # 1.10: Deposito Glacial

Fuente: (P.A.Ck, 2010)

Depósitos de climas áridos y desérticos:

Los ambientes áridos tienen una serie de implicaciones medioambientales, como la desecación profunda, la acumulación de sales y la alta movilidad de los sedimentos con el viento, los cuales condicionan las propiedades de estos suelos, entre las que destacan:

- Muy bajo contenido de humedad, dando lugar a suelos no saturados, con succiones relativamente altas.
- Bajo contenido en materia orgánica, por lo que los suelos áridos resultan pobres para fines agrícolas.
- Desarrollo de una costra rica en sales; la pérdida de humedad por evaporación en la superficie produce cementaciones por precipitación de sales.

• Muchos suelos áridos tienen un origen eólico, resultando un suelo mal graduado, con una estructura muy suelta. (P.A.Ck, 2010).

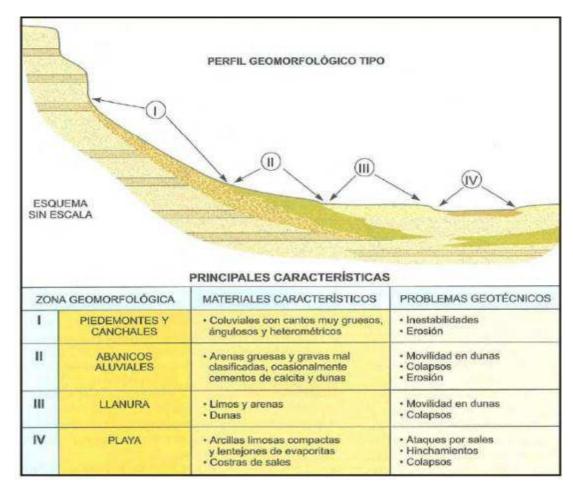


Figura # 1.11: Características de los depósitos de climas áridos y desérticos.

Fuente: (P.A.Ck, 2010)

Depósitos evaporíticos

Estos depósitos están formados por la precipitación química de sales, cloruros o sulfatos, típicos de medios árido o desérticos, lacustres, lagunares y litorales.

Las características comunes a estos depósitos son las siguientes:

- Producen reacciones químicas con los hormigones, que pueden ocasionar su deterioro y destrucción.
- Son fácilmente solubles, sobre todo los cloruros.
- Pueden sufrir cambios de volumen, al pasar las anhidritas a yesos.

- En superficie forman costras.
- Representan un riesgo de hundimiento cuando se producen fenómenos de disolución y calcificación.

Depósitos de climas tropicales

Las condiciones climáticas en regiones tropicales con alta humedad y altas temperaturas determinan una intensa meteorización química, originando suelos residuales muy desarrollados. Su composición mineralógica, su fábrica y las condiciones geoquímicas del medio controlan el comportamiento geotécnico de estos suelos. Cuando se precipitan altos contenidos de hierro y aluminio se forman lateritas. Si las condiciones de drenaje son deficientes pueden formarse los denominados suelos negros, ricos en esmectitas. Si el drenaje es alto se forman las arcillas rojas, ricas en haloysitas.

En los suelos tropicales son frecuentes los encostramientos, con mejores propiedades geotécnicas en superficie que en profundidad. Tienden a formar agregaciones de partículas de arcilla de tamaño de limo y arena, dando resultados en los análisis granulométricos y de plasticidad que no corresponden a su naturaleza arcillosa; son altamente sensibles a la desecación. Los tipos de suelos más representativos son los siguientes:

- Zonas de ladera y de montaña: formación de suelos rojos. Suelos ricos en haloysitas en condiciones de buen drenaje. Cambios de propiedades geotécnicas son la desecación y la agregación de partículas.
- En zonas bajas y llanuras: formación de suelos negros. Predominio de las esmectitas. Problemas de Expansividad y mal drenaje.
- Suelos encostrados: Presentan un buen comportamiento geotécnico. En función del tipo de mineral predominante se forman lateritas (Al), ferricritas (Fe), silcritas (Si), o calcritas (Ca). (P.A.Ck, 2010)

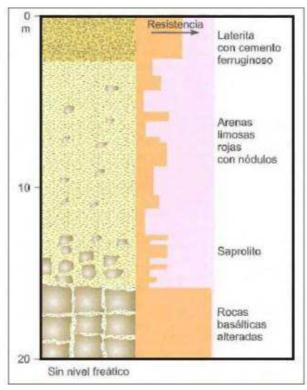


Figura #1.12: Deposito clima Tropical

Fuente: (P.A.Ck, 2010)

Depósitos de origen volcánico:

Los suelos volcánicos pueden ser residuales por alteración de los materiales infra yacentes, resultando depósitos limo-arenosos y arcillas, y transportados como productos de las emisiones volcánicas dando acumulaciones de tipo lacustre o aluvial cuando son transportados por el agua.

Los minerales procedentes de las rocas volcánicas son altamente inestables frente a la meteorización, transformándose rápidamente en productos de alteración y arcillas, abundando las haloysitas, las alófanas (estructura amorfa) y las esmectitas.

El predominio de alguno de estos minerales depende de las condiciones de drenaje y geoquímica del medio. Las arcillas volcánicas tienen a formar fábricas oolíticas y agregaciones de arcilla, dando granulometrías y plasticidades correspondientes a suelos de mayor tamaño. Los suelos esmectíticos son expansivos, con altas plasticidades. Los suelos residuales pueden ser muy susceptibles, comportándose de forma muy inestable frente a rápidos aumentos de la presión intersticial, o cargas cíclicas por terremotos, en cuyo caso se pueden producir deslizamientos y flujos de tierras. (P.A.Ck, 2010)

Otro grupo importante de suelos volcánicos lo forman los depósitos de piroclastos. Están formados por partículas de tamaños variables, desde cenizas (menos de 2 mm) hasta lapilli (2 mm – 64 mm), o fragmentos de mayor tamaño. Se acumulan, en capas estratiformes, según sea la dirección del viento, o dirección de la nube ceniza o colada de piroclastos. Forman estructuras esponjosas de muy baja densidad y alta porosidad. Cuando las cenizas se consolidan o cementan se forman tobas blandas, muy alterables y colapsables frente a cargas relativamente bajas.

Si los piroclastos están aún fundidos en el momento de su sedimentación, se aglomeran formando una toba compacta.

Si durante la depositación y enfriamiento se desarrollan fuertes uniones entre las partículas de estos depósitos por soldamiento o compactación de los productos vítreos, su resistencia aumenta. Cuando una colada de lava, aún incandescente, cubre a uno de estos depósitos piroclásticos, o bien a suelos residuales, se produce la rubefacción de su superficie, originando un suelo rojo compacto denominado almagre. En las regiones volcánicas se puede formar depósitos lacustres, en cuya composición abundan las esmectitas, la materia orgánica y los restos biogénicos. (P.A.Ck, 2010)

1.1.7. SUELOS EXPANSIVOS

Según (Mesta, 2012) Los suelos expansivos son aquellos que producto de una variación de su contenido de humedad, experimentan un cambio de volumen considerable que trae consigo la afectación de las estructuras que se apoyan en este tipo de suelos.

Se considera expansivo un suelo que manifiesta, ante una modificación de su estado (de tensiones, de humedad, o ambos conjuntamente), un incremento de volumen (caso de que el estado de tensiones así lo permita) como consecuencia de la generación de una tensión vertical en el seno de su estructura interna (tensión llamada de hinchamiento.) (Torrijo & Franchi, 2013)

1.1.8. SUELOS COLAPSABLES 1.1.8.1. ANTECEDENTES

Los suelos Colapsables son suelos no saturados que experimentan un reacomodo de sus partículas y un excesivo decremento de su volumen con o sin aplicaciones de cargas externas. Los problemas de suelos colapsables no se presentan únicamente en ambientes desérticos si no también pueden encontrarse en otros entornos geológicos. (Comisión Nacional del Agua(Mexico), 2007).

Este tipo de suelo tiene mayor importancia en obras hidráulicas que en otras obras civiles, ya que aquellas siempre tienen que interactuar con el agua cuya presencia constituye el problema primordial .Así mismo hay que tomar en cuenta las cambios climatológicos y las condiciones hidrológicas de los diferentes sitios, ya que en zonas áridas se presentan periodos de sequía prolongados que preceden lluvias escasas, pero a veces torrenciales, En zonas húmedas ,los depósitos sedimentados productos de inundaciones recientes pueden formar zonas de peligro potencial para periodos de tormentas futuras. Los suelos Colapsables son altamente inestables ante estos fenómenos extremos. (Comisión Nacional del Agua(Mexico), 2007)

1.1.8.2.CONCEPTO

(Dudley & Maswoswe, 2013) Definen como colapso a cualquier disminución rápida de volumen del suelo, producida por el aumento de cualquiera de los siguientes factores. Contenido de humedad (w) ‰ Grado de saturación (Sr) ‰ Tensión media actuante (τ) Tensión de corte (σ) .

Los suelos colapsables pueden sufrir una reducción de volumen a la que se presenta un asentamiento si necesidad de aplicarle ninguna carga vertical debido a una saturación sobrevenida.

Este fenómeno puede estar originado por diversas causas según el autor Dadle, 1970, Maswoswe, 1985):

Composición mineralógica con presencia de elementos solubles en agua: el acceso de agua a la estructura del material supondrá un proceso de disolución de parte de la estructura, colapsando el resto para reordenarse hasta alcanzar un grado de empaquetado conforme al estado de tensiones en que se encuentre el terreno. Se han descrito riesgos y patologías asociadas a procesos de colapso inducidos por disolución en formaciones que alternan arcillas y yesos.

Textura granular con una estructura soportada por la matriz, en la cual los elementos de la fracción gruesa se encuentran separados y unidos entre ellos por elementos de granulometría fina (puentes o agregados de limos o arcillas) que pueden verse alterados por la saturación del material.

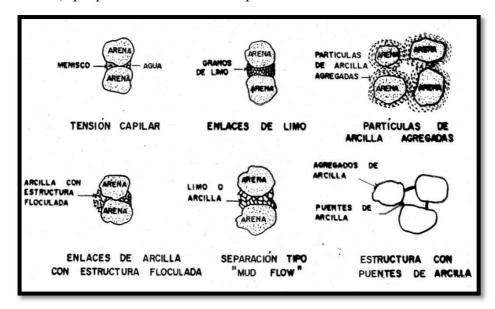


Figura #1. 13: Texturas potencialmente colapsables
Fuente: (Dudley & Maswoswe, 2013)

- Falta de compacidad de determinados suelos, de granulometría muy fina y baja plasticidad (limos): algunas formaciones de limos sedimentados en régimen eólico y bajo clima árido pueden sufrir un proceso de colapso si su humedad supera un determinado límite, por encima del cual las tensiones capilares (que juegan un papel esencial en el mantenimiento del estructura) se desequilibran. Este mismo fenómeno es común al asiento por colapso que manifiesta un relleno antrópico no compactado.
- Fenómenos asociados a procesos de pérdidas de la granulometría más fina (limo, arcilla) por erosión interna o por lavado inducido por un gradiente hidráulico.

Un caso específico del fenómeno de colapso se manifiesta en suelos potencialmente licuables, es decir, susceptibles de sufrir un asiento súbito bajo una carga dinámica (por lo general de tipo sísmico) por modificación de las presiones intersticiales. Este fenómeno afecta esencialmente a suelos granulares de grano medio a fino (arenas finas), de compacidad media a floja y saturadas. (Dudley & Maswoswe, 2013)

1.1.8.3. CARACTERISTICAS DE SUELOS COLAPSABLES

Reginatto (1977) señala que, en general, los suelos colapsables presentan una serie de características comunes tales como tales como.

- Estructura macro porosa, con índice de huecos (e), entre relativamente alto, a muy alto.
- Granulometría predominantemente fina, con predominio de fracciones de limos y de arcilla. El tamaño de los granos es generalmente poco distribuido y con los granos más grandes escasamente meteorizados. La mayoría de las veces, la cantidad de la fracción arcilla es relativamente escasa, pero sin embargo, tiene una influencia importante en el comportamiento mecánico de la estructura intergranular. (R.Redolfi, 2007)
- Estructura mal acomodada, con partículas de mayor tamaño separadas por espacios abiertos, y unidas entre sí por acumulaciones o "puentes" de material predominantemente arcilloso. En muchos casos existen cristales de sales solubles insertados en tales puentes o uniones arcillosas. (R.Redolfi, 2007)

Reconociendo por lo tanto que el colapso de la estructura del suelo puede producirse por una variedad de procesos diferentes de la saturación. Reginatto (1977) sugiere que, a esta lista de factores puede agregarse la interacción química entre el líquido saturante y la fracción arcillosa.

A efectos de definir y diferenciar los distintos tipos de colapso Uriel y Serrano (1973,1974) clasifican a los suelos colapsables o desmoronables en:

Grupo I: Suelos en los que tiene lugar un rápido cambio de la relación entre presiones efectivas y las deformaciones sin que se alcance la resistencia última del material.

De acuerdo con esto la causa del colapso es únicamente el cambio de las presiones efectivas. A este grupo pertenecen los limos o arcillas cementadas y las rocas de gran porosidad. Cuando se ensaya a humedad constante, se detecta una notable modificación de su módulo de compresibilidad al alcanzar un cierto valor las presiones efectivas.

Grupo II: Suelos en los que, sin la presencia o cambio de las condiciones que producen el colapso, no hay cambio abrupto en la relación presión-deformación. Tal es el caso de los loess y algunas arcillas que contienen sulfatos. (Comisión Nacional del Agua(Mexico), 2007)

Si se ensayan a humedad constante, la relación tensión-deformaciones es una curva suave y continua y sin agudos quiebros. La saturación produce, sin embargo, un importante cambio volumétrico, debido probablemente a un incremento de la presión de los poros que origina el agotamiento de la resistencia al corte del suelo.

Existen suelos colapsables, que una vez saturados, son altamente compresibles .Esto explica el gran cambio de volumen que sufren estos suelos. A fin de conocer los mejores mecanismos de colapso, se describen a continuación los principales suelos colapsables. (Comisión Nacional del Agua(Mexico), 2007).

1.1.8.4.CLASES DE DEPOSITOS 1.1.8.4.1. DEPOSITOS EOLICOS

Entre todos los tipos de suelo, los depósitos eólicos son los más colapsables, y se distinguen tres tipos .Loess, depósitos costeros y cenizas volcánicas, y todos ellos son transportados por el viento a gran distancia en regiones cálidas.

Los loess. Son partículas de color amarillento, con un tamaño semejante al de la arena de forma redondeada y con una distribución relativamente uniforme. El suelo está compuesto por minerales como el cuarzo, feldespato, calcita o mica junto con la arcilla montmorilonita siendo un material aglutinante, de modo que cuando está seco el suelo presenta una textura relativamente dura. (Comisión Nacional del Agua(Mexico), 2007)

Depósitos Costeros. Los depósitos eólicos también se forman en clima húmedo, a lo largo de las costas de mares y lagos. La intemperización mecánica produce abundantes partículas gruesas que son acarreadas cuando la playa se seca por los vientos costeros durante las horas de marea baja y reposan en playas debido a las acciones de las olas.

Cenizas Volcánicas. También son transportadas por el viento y son pequeños fragmentos de rocas ígneas lanzados por el vapor sobrecalentado y por los gases de los volcanes. Los depósitos de estas cenizas absorben el agua con facilidad y su descomposición es rápida.

1.1.8.4.2. DEPOSITOS ALUVIALES

Son depositados naturalmente por avenidas súbitas o flujos de lodo los cuales se generan en periodo de retorno largo y consisten en materiales sueltos con un alto porcentaje de arcilla. Estos depósitos se van secando y no vuelven a saturarse hasta la siguiente llegada de la avenida por lo tanto son inestables en estado seco. El contenido de arcilla tiene una influencia importante en el comportamiento del suelo, se ha observado que el asentamiento máximo ocurre cuando el porcentaje de arcilla es de doce por ciento de los sólidos y presenta un menor asentamiento cuando las arcillas representan un menor de cinco por ciento y el suelo se expande si dicho porcentaje es mayor que el treinta por ciento. (Comisión Nacional del Agua(Mexico), 2007)

1.1.8.4.3. SUELOS RESIDUALES

Estos suelos pueden estar constituidos por granos de arena y por materiales arcillosos que provienen de cuarzo y feldespatos. Los granos de arena forman una estructura de alma abierta en cuanto a los minerales arcillosos sirven como unión granular entre los primeros .Estando seco el suelo parece ser muy firme, pero una vez saturado, la escasa cantidad de minerales arcillosos, generalmente caolinitas, pierde su capacidad de unir las partículas sólidas de arena. En consecuencia, el suelo se comprime o se colapsa considerablemente.

1.1.8.4.4. SUELOS COMPACTADOS

Estos suelos al humedecerse pueden tener un comportamiento expansivo o colapsables, dependiendo de la carga y del tipo de suelo. En los suelos arenosos o limosos casi

siempre se presenta una tendencia a la reducción de volumen. Para otros suelos, si la carga aplicada es pequeña, los suelos se expanden al saturarse, por lo que se puede definir una carga de expansión es decir una carga de frontera que marque la tendencia al cambio de volumen, si la carga aplicada es mayor que ella los suelos experimentan reducción de volumen. Al ser más plástico el suelo con un mayor contenido de arcilla, la carga de expansión es mayor y el suelo es menos colapsables. (Comisión Nacional del Agua(Mexico), 2007)

Handy 1973 propuso identificar la colapsabilidad de suelo de acuerdo con su contenido de finos y definió para ellos los criterios presentados en la siguiente tabla.

TABLA # 1.4: Identificación de los Suelos Colapsables

CONTENIDO DE FINOS (%)	DESCRIPCIÓN
< 16	ALTAMENTE COLAPSABLE
16 – 24	PROBABLEMENTE COLAPSBLE
24 – 32	MARGINALMENTE COLAPSABLE
>32	NO COLAPSABLE

Fuente: (Torrijo & Franchi, 2013)

Determinados tipos de suelos pueden sufrir una disminución de volumen a la que se asocia un asentamiento sin necesidad de que les sea aplicada ninguna carga vertical, siendo debido el proceso a una saturación sobrevenida. (Torrijo & Franchi, 2013).

1.1.8.5. CONSOLIDACIÓN DE SUELOS 1.1.8.5.1. DEFINICION

La Consolidación es un proceso que se produce en los suelos y consiste en la reducción del volumen total del suelo provocado por la colocación de una carga o el drenaje del terreno. Por su historia geológica el suelo tiene una estructura.

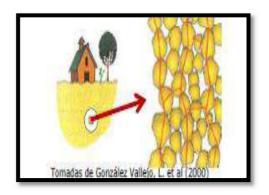


Figura #1. 14: PARTICULAS DEL SUELO

Fuente: Gonzales Vallejo, L (2000)

A efectos prácticos ,tantos las partículas del suelo como el agua son indeformable, de forma que los cambios de volumen o las distorsiones del suelo se deben a una reordenación de sus partículas que giran o se deslizan sobre otra.

Todos los materiales al ser sujeto a cambio en las condiciones de esfuerzo, experimentan deformaciones, que pueden ser o no dependientes del tiempo, las relaciones entre los esfuerzos, deformaciones y el tiempo, varían según el material a analizar. (Poliotti & Sierra)

Las características esfuerzo-deformación-tiempo de un suelo dependerán, no solo del tipo de suelo y su estado de consistencia sino también en la forma en que es cargado, de su ubicación estratigráfica, etc. Es necesario estudiar estas características del suelo, debido a que en general estos sufren deformaciones superiores a las de las estructuras que le transmite la carga y no siempre se produce instantáneamente ante la aplicación misma de la carga.

En la figura # 1.15. Se observa en forma esquemática el fenómeno de la consolidación así como también dos casos famosos de estructuras que sufrieron los efectos del proceso de la consolidación. (Poliotti & Sierra)

Las deformaciones del suelo debido a la aplicación de una carga externa (figura #1.16) son productos de una disminución del volumen total de la masa del suelo y particularmente una reducción del volumen de vacíos, ya que el volumen de solidos es constante, por lo tanto dichas deformaciones son productos de una disminución de la relación de vacíos del suelo. (Poliotti & Sierra)

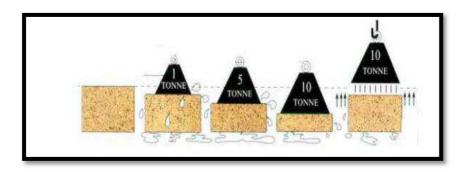


Figura #1.15: .Proceso de Consolidacion.

Fuente: (Poliotti & Sierra)

Cuando un deposito saturado se somete a un incremento de esfuersos totales,como resultados de cargas extrernas aplicadas, se produce un exceso de presion neutra. Puesto que el agua no resiste al corte, la presion neutra se disipa mediante un flujo de agua al exterior, cuya velocidad de drenaje depende de la permeabilidad del suelo. (Poliotti & Sierra)

En cambio el depósito se encuentra parcialmente saturado, la situacion resulta mas compleja debido a la presencia del gas que puede permitir cierta compresión, como se mencionó, sin que se produzca un flujo de agua.

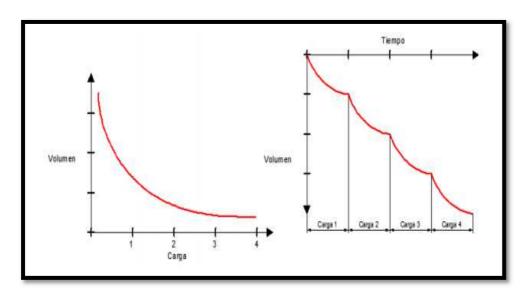


Figura #1.16: Variacion del Volumen durante la Consolidacion.

Fuente: (Poliotti & Sierra)

1.1.8.5.2. Proceso de Consolidación

En suelos saturados:

Compresión: Es la reducción de huecos y un reordenamiento de las partículas hacia una estructura más densa.

Hinchamiento: Aumento de huecos y un reordenamiento de las partículas hacia una estructura más abierta (manos densa).

1.1.8.5.3. Consecuencias de la Consolidación.

- Incremento en el esfuerzo efectivo
- Reducción en el volumen de vacíos
- Reducción en el volumen total
- Asentamientos en el terreno
- Asentamientos en la estructura

1.1.8.5.4. Permeabilidad y Consolidación.

Suelos Arenosos:

(K) alta permeabilidad, el asentamiento ocurre rápidamente, generalmente al final de la construcción.


Suelos Arcillosos.

(K) baja permeabilidad, el asentamiento ocurre lentamente, la estructura sigue asentándose durante años después de la construcción.

1.1.8.5.5. Velocidad de Asentamiento en Tipos de Suelo

El tiempo en que se desarrolla el asentamiento depende de:

- Depende de:
 - Carga externa (q)
 - Conductividad hidráulica (k)

- · Asentamiento instantáneo: Controlable en tiempo de obra
- Asentamiento diferido: Debe preverse en etapa de proyecto para evitar falla de obra

1.1.8.5.6. Suelos Normalmente Consolidados.

Se dice que un suelo es normalmente Consolidado cuando durante su pasado nunca fue sometido a presiones mayores a las que actualmente experimenta.

Suelos Sobre consolidados.

Un suelo puede estar sobre consolidado por:

- Retirada de mantos de hielo.
- Desecación por exposición temporal en superficie, En estas condiciones puede formarse una costra superior de desecación (situación típica capa dura arriba, capa blanda abajo).
- Al descender el nivel freático y volver a elevarse, aunque el suelo no llegue no llegue a secarse por efecto de la capilaridad.
- Por flujo descendente durante un periodo de tiempo suficientemente prolongado.

1.1.8.6. METODO DE IDENTIFICACION

1.1.8.6.1. METODO DE CAMPO

Se toma una muestra de suelo y se dividen en dos partes, se recortan ambas hasta que tengan una forma regular y un mismo volumen. Se satura una de las 2 con agua y se comparan ambas. Si en la porción saturada se observa una reducción en su volumen el suelo puede ser colapsables.

Propiedades Índice.

Se han desarrollado varios métodos de acuerdo a sus propiedades índices para identificar suelos colapsables.

Relación de vacío: Se define como el coeficiente de colapso Kd A la relación entre eu y eo como Kd =eu/eo donde eu es la relación de vacíos en el estado de limite líquido y eo es la relación de vacíos natural (Denisov, 1951;Northey, 1969).

Considerando este coeficiente el suelo es colapsables si Kd se encuentra entre los límites siguientes:

Limite Liquido. El límite líquido se ha considerado como un indicador importante de la colapsabilidad del suelo. Holtz y Hilf (1961) propusieron una carta que relaciona el límite líquido con el peso específico seco (Figura. #1.17) en la cual se presentan curvas correspondientes a dos valores típicos de la gravedad específica Gs; cada una de ellas separa dos zonas, una en que los suelos observados tienden a colapsarse y la otra no tienen la tendencia anterior.

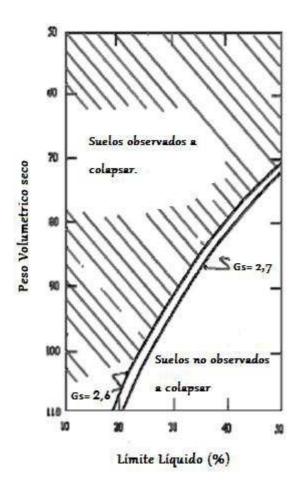
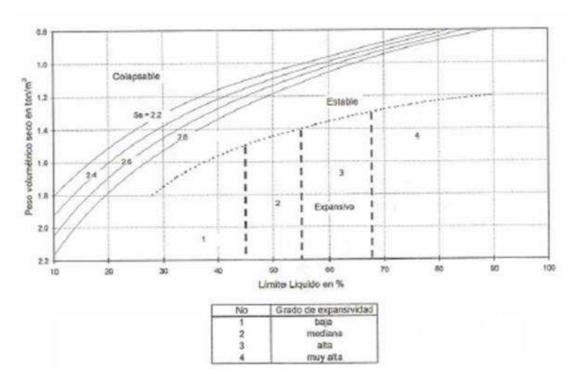


Figura # 1.17: Pruebas índice para identificación de suelos colapsables (Holtz y Hilf, 1961).

Posteriormente, Gibbs y Bara (1962) establecieron un criterio similar a través de las expresiones siguientes:

$$\forall d = \frac{162.3}{1 + 0.026 \, Ll}$$

Ó


$$\forall d = \frac{2.6 \, Ll}{100}$$

Donde:

Vd= peso volumétrico seco

LL= limite líquido.

En la figura #1.18 se presenta la clasificación unificada para los suelos expansivos y colapsables. Utilizando como parámetros índice de peso volumétrico seco y limite líquido.

Figura# 1.18: Criterio de Recuperación para suelos expansivos y colapsables
Fuente: (Comisión Nacional del Agua(Mexico), 2007)

Límite de Plasticidad: Feda (1966) establece la siguiente condición para que un suelo sea considerado colapsables:

$$\frac{\frac{\text{yd}}{100 \text{ Gs}} - \text{Lp}}{\text{IP}} \stackrel{\text{Lp}}{\Rightarrow} 0.89$$

Dónde:

LP = límite de plasticidad

IP= índice de plasticidad

Gs=gravedad especifica.

Contenidos de finos. Handy (1973) propuso identificar la colapsabilidad de suelo de acuerdo con su contenido de finos y definió para ello los criterios presentados en siguiente tabla:

TABLA # 1.5: Clasificación De Suelos Colapsables En Función De Porcentajes De Finos.

Contenido de finos (%)	Descripción
< 16	Altamente colapsable
16 – 24	Probablemente colapsable
24 – 32	Marginalmente colapsable
> 32	No colapsable

Fuente: (Torrijo & Franchi, 2013)

Prueba de Consolidación

Para una mayor identificación se tiene llevando a cabo una prueba de consolidación. La muestra de suelo, manteniendo su contenido de agua natural, se coloca en el anillo de consolidación. Las cargas se aplican progresivamente hasta alcanzar una presión de 200KPa. Al final de este incremento de carga, se satura la muestra con agua y se le deja por un día. La prueba se continúa hasta alcanzar la carga máxima programada. La curva de compresibilidad que resulta se muestra en la siguiente figura.

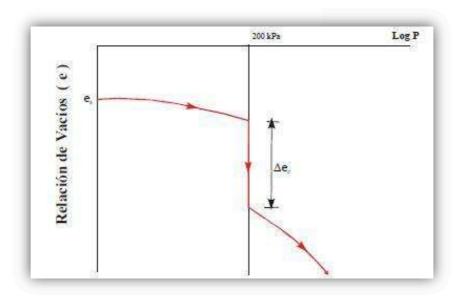


Figura # 1.19: Identificación de suelos colapsables Fuente: (Comisión Nacional del Agua(Mexico), 2007)

El potencial de colapso se define como.

$$CP = \frac{\Delta \ell_c}{1 + \ell_0}$$

Donde $\Delta \ell_c$ es el cambio en la relación de vacío durante la saturación y es la relación de vacíos natural. El potencial de colapso también se define como:

$$CP = \frac{\Delta H_c}{H_0}$$

Donde ΔH_c es el cambio de altura de la muestra durante la saturación y Ho es la altura inicial de la muestra antes de la saturación. Los suelos se clasifican de acuerdo a la siguiente tabla:

TABLA # 1.6: Clasificación De Suelos Colapsables En Función Del Potencial De Colapso.

CP %	GRADO DEL PROBLEMA		
0 – 1	SIN PROBLEMA		
1 – 5	PROBLEMA MODERADO		
5 - 10	PROBLEMA		
10 - 20	PROBLEMA SEVERO		
>20	PROBLEMA MUY SEVERO		

Fuente: (Comisión Nacional del Agua(Mexico), 2007)

Es importante hacer notar que el potencial de colapso es solamente un indicador relativo de la colapsabilidad de suelo y no puede utilizarse en el cálculo de asentamiento por colapso. Esto se debe a que la deformación de colapso depende en gran medida del nivel de esfuerzo a que está sometido el suelo antes de la saturación como el potencial de colapso es determinado solamente para el nivel de esfuerzo igual a 200KPa, no es válido para estimar el colapso para otros niveles de esfuerzo.

1.1.9. SUELOS DISPERSIVOS

1.1.9.1. CONCEPTO

Las arcillas dispersivas son fácilmente erosionables debido al estado físico-químico de la fracción de la arcilla de un suelo que causa a las partículas individuales de la arcilla a de flocularse (dispersarse) y se rechazan en la presencia del agua relativamente pura. Las arcillas en este estado son altamente erosivas por los bajos gradientes hidráulicos del flujo del agua y en algunos casos por el agua en reposo. Cuando el suelo de arcilla dispersiva es sumergido en agua, la fracción de arcilla tiende a comportarse de manera semejante a las partículas granulares, es decir las partículas de arcilla tienen una atracción mínima de electro-química y fallan hasta adherirse cercanamente o enlazarse con otras partículas de suelo. Así, el suelo de arcilla dispersiva erosiona con la presencia del agua que fluye cuando las plaquetas individuales de la arcilla son partidas y transportadas. Tal erosión puede ser provocada por una filtración inicial a través de la presa, por ejemplo, en las áreas de suelos con alta permeabilidad, especialmente alrededor de los conductos, contra las estructuras de concreto y en los contactos de las cimentaciones, el secado de grietas, el asentamiento diferencial de las fisuras, la saturación del asentamiento de las fisuras, y/o el fracturamiento hidráulico. (GARAY & ALVA, 2010)

1.1.9.2. IDENTIFICACION DE LOS SUELOS DISPERSIVOS

Los suelos dispersivos no pueden ser identificados con una clasificación visual del suelo o con índice de normas de ensayos, tales como el análisis granulométrico o los límites de Atterberg. Por lo tanto, a causa de ésto, han sido ideados otros ensayos. Las arcillas deben ser ensayadas por características dispersivas como un procedimiento de rutina realizable durante los estudios para presas de tierra y otras estructuras hidráulicas en las cuales éstas puedan ser empleadas. (GARAY & ALVA, 2010)

Mientras que los ensayos en laboratorio son un camino útil para identificar los suelos dispersivos, también pueden ser determinados por la observación del comportamiento de los suelos en campo.

Por ejemplo:

- La presencia de quebradas profundas y fallas por tubificación en pequeñas presas.
- La erosión en grietas de los caminos.
- La erosión tipo túnel a lo largo de las quebradas.
- las arcillas unidas en roca.
- La presencia de agua nublada en presas pequeñas y charcos de agua luego de la lluvia. (GARAY & ALVA, 2010).

Figura # 1.20
Fuente: Hilda Garay, Jorge Alva 2010

Figura #1.21
Fuente: Hilda Garay, Jorge Alva 2010

1.1.9.3.TIPOS DE ENSAYOS DE CLASIFICACION

Los ensayos investigados en este trabajo son los llamados ensayos físicos y los que enseguida se indican.

También existen ensayos químicos, los cuales no serán tratados aquí.

- Ensayo de Crumb (USBR 5400-89)
- Ensayo del Doble Hidrómetro (ASTM D 4221-90, USBR 5405-89)D 4647
- Ensayo de Pinhole Test (ASTM D 4647-93, USBR 5410-89) (GARAY & ALVA, 2010).

1.1.9.3.1. Ensayo de Crumb

El ensayo de Emerson Crumb (Emerson, 1967) fue desarrollado como un procedimiento simple para identificar el comportamiento dispersivo en campo, pero ahora es muy frecuentemente usado en el laboratorio. En las Figuras 1.22, 1.23, 1.24 se observa el ensayo de Crumb desarrollado en el laboratorio. (GARAY & ALVA, 2010).

El ensayo consiste en colocar un trozo del suelo en el agua observando la dispersión como el grado de nubosidad del agua.

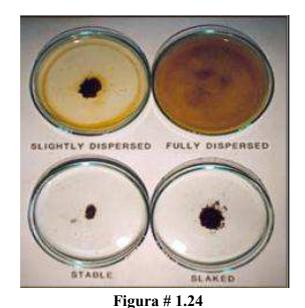
GRADO1.Ninguna reacción

GRADO2.Reaccion ligera

GRADO3.Reaccion moderada

GRADO4.Reaccion fuerte (GARAY & ALVA, 2010).

En la figura se puede observar los floculo formados en la superficie del agua, podemos decir que el resultado del ensayo es un indicio de las características dispersivas del suelo. Esto es típico en un suelo dispersivo.


Figura # 1.22
Fuente: (GARAY & ALVA, 2010)

En esta foto se aprecian dos tipos de resultados en grados de dispersión. La muestra de la derecha es ligeramente dispersivo de Grado 3 y el de la izquierda no dispersivo de Grado 1.

Figura # 1.23
Fuente: (GARAY & ALVA, 2010)

Resultados diferentes en el Ensayo de Crumb.

Fuente: (GARAY & ALVA, 2010)

1.1.9.3.2. El Ensayo del Doble Hidrómetro

El ensayo del Servicio de Conservación del Suelo de EEUU, también conocido como Ensayo del Doble Hidrómetro, o el Ensayo de Dispersión en Porcentaje (Norma de la Asociación de Australia, 1980). Este ensayo implica dos ensayos del hidrómetro en suelos tamizados a través de la malla de 2.36 mm. Los ensayos del hidrómetro son conducidos con y sin dispersante. La dispersión en porcentaje es:

$$Q^{P} \times 100$$

Dónde:

P = porcentaje de suelos más finos que 0.005 mm para el ensayo sin dispersante.

Q = porcentaje de suelos más finos que 0.005 mm para el ensayo con dispersante.

Sherard (1976) señala que los suelos con un porcentaje de dispersión mayor que el 50% son susceptibles a la dispersión y a las fallas de tubificación en presas, y aquellos con un porcentaje de dispersión menor que el 15% no son susceptibles. Ellos también señalaron que existe una buena correlación entre el ensayo de Dispersión en Porcentaje y el Ensayo de Pinhole descrito a continuación. (GARAY & ALVA, 2010).

La interpretación del porcentaje de dispersión es el siguiente:

Menor que el 30% es no dispersivo Entre 30 a 50% es intermedio Mayor que 50% es dispersivo

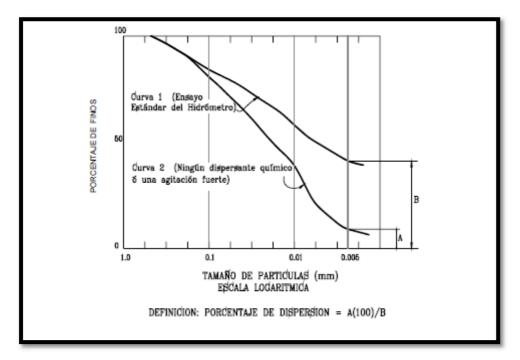


Figura # 1.25
Fuente: (GARAY & ALVA, 2010)

Figura # 1.26: Equipo Utilizado En Ensayo Doble Hidrómetro Fuente: (GARAY & ALVA 2010).

En la figura# 1.26 se observa varias probetas con muestra, los recipientes del lado derecho son los ensayados sin el de defloculante y sin agitación mecánica.

1.1.9.3.3. El Ensayo de Pinhole

La clasificación de dispersión de Pinhole, conocido también como Ensayo de Pinhole, o Ensayo de Pinhole Sherard (Norma de la Asociación de Australia, 1980). (GARAY & ALVA, 2010).

Este ensayo fue desarrollado por Sherard et al (1976). Un hueco de 1.0 mm de diámetro es perforado en el suelo a ser ensayado, y a través del agujero se pasa agua bajo diferentes cargas y duraciones variables. Las condiciones a simular en el ensayo en el ensayo es de un terraplén con una fisura en el suelo.

Figura # 1.27: Piezas del molde donde es colocado el espécimen para realizar el Ensayo de Pinhole.

Fuente: (GARAY & ALVA, 2010)

Figura # 1.28 Piezas del equipo a utilizar en el ensayo listo para compactar.

Fuente: (GARAY & ALVA, 2010)

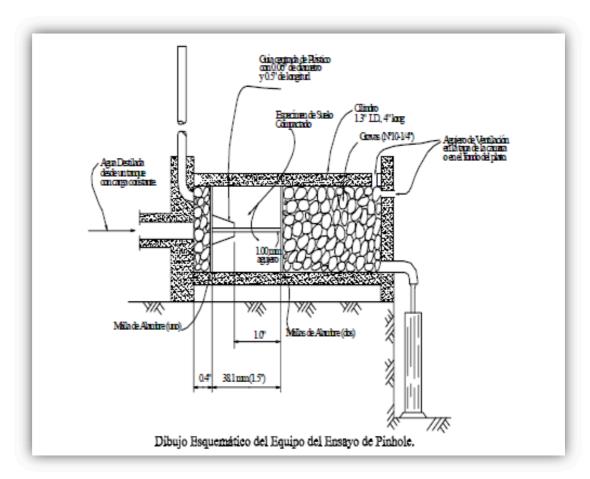


Figura #1.29: Equipo Pinhole Test.

Fuente: (GARAY & ALVA, 2010)

1.1.9.4. MUESTRAS Y ENSAYOS REALIZADOS COMO EJEMPLO

A manera de ejemplo, se presenta una secuela de ensayos que se realizaron en el

Laboratorio Geotécnico del CISMID de la FIC-UNI. (Perú).

La realización de estos ensayos se basa en las Normas ASTM, excepto para el ensayo de Crumb que se rige en una Norma del USBR. En el caso del ensayo de Pinhole, fue necesaria la adquisición de equipo. Se programó ensayos de clasificación de suelos para determinar la composición granulométrica y la plasticidad de las muestras.

Luego se realizaron los ensayos de dispersión. (GARAY & ALVA, 2010).

A continuación se indican las muestras ensayadas:

- a) Muestras de la Laguna de Oxidación de San José-Chiclayo
- b) Muestra de la Cantera de UNICON en Jicamarca-Lima
- c) Muestra del Proyecto Rehabilitación de la Carretera Llo-Desaguadero en Puno
- d) Muestra de la Presa Tinajones en Lambayeque
- e) Muestra de la Presa Cucho quesera en Ayacucho (GARAY & ALVA, 2010)

Los ensayos de dispersión de suelos realizados para determinar las características dispersivas fueron:

- Ensayo de Crumb,
- Ensayo del Doble Hidrómetro,
- Ensayo del Pinhole.

Ensayo de Crumb (USBR 5400-89)

El ensayo consiste en preparar un espécimen cúbico de 15 mm de lado o eligiendo un suelo Crumb secado al aire de igual volumen (sería preferible usar un suelo Crumb con su humedad natural). El espécimen es colocado cuidadosamente en alrededor de 250 ml de agua destilada. Mientras el suelo Crumb se comienza a hidratar, se observa la tendencia de las partículas coloidales para de flocularse y entrar en suspensión. (GARAY & ALVA, 2010)

La tendencia para que las partículas de arcilla entren en suspensión coloidal es observada después de 5-10 minutos de inmersión, usando la siguiente guía de

interpretación:

GRADO 1

GRADO 2

Ninguna reacción:

El desmenuzado puede desmoronarse y esparcirse en el fondo del cubilete en amontonamiento plano, sin ningún signo de agua nublada causada por coloidales en suspensión.

Reacción ligera:

Simple insinuación de nubosidad en agua en la superficie del Crumb (si la nubosidad es fácilmente visible, use el grado 3).

GRADO 3

GRADO 4

Reacción moderada:

Nubosidad de coloides fácilmente reconocible en suspensión.

Usualmente diseminado en trazas delgadas en el fondo del cubilete.

Reacción fuerte:

Nubosidad coloidal cubre casi la totalidad del fondo del cubilete, usualmente en una superficie muy delgada. En casos extremos toda el agua en el cubilete se vuelve nubosa.

Fuente: (GARAY & ALVA, 2010)

Ensavo del Doble Hidrómetro (ASTM D 4221-90)

La distribución del tamaño de partículas es determinada empleando primero el Ensayo Estándar del Hidrómetro en el que el espécimen del suelo es dispersado en agua destilada con una fuerte agitación mecánica y con un dispersante químico. Un ensayo paralelo al hidrómetro es realizado después en un espécimen duplicado, pero sin agitación mecánica y sin dispersante químico.

El "porcentaje de dispersión" es la relación de transformación de las partículas de 0.005 mm de diámetro del segundo ensayo al primero, expresado en porcentaje

El criterio para la evaluación del grado de dispersión usando los resultados del ensayo

del Doble Hidrómetro es:

Tabla # 1.7: Valores para determinar un suelo Dispersivo

PORCENTAJE DE	GRADO DE	
DISPERSIÓN	DISPERSIÓN	
<30	No dispersivo	
30 a 50	Intermedio	
>50	Dispersivo	

FUENTE: (GARAY & ALVA, 2010)

Numerosos ensayos deben realizarse porque la dispersividad del suelo puede variar grandemente en distancias cortas dentro de un área de préstamo a lo largo de una alineación de un canal o dentro de un terraplén existente. Existen evidencias que un alto porcentaje de suelos con características dispersivas mostró 30% de dispersión o más, cuando se ensayaron con este método (Sherard y Decker, 1977).

Una variación de este método es llamado Ensayo del Triple Hidrómetro: 1) Ensayo normal del Hidrómetro con dispersante y agitación; 2) Ensayo solamente con agua destilada, 3) Ensayo con agua de río. En la Figura 4 se presenta resultados del ensayo del Doble Hidrómetro.

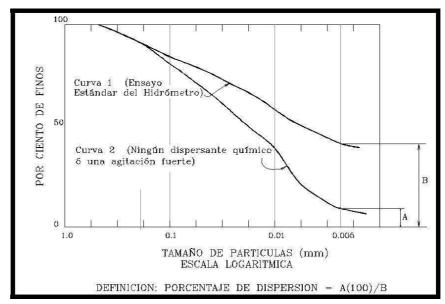


Figura # 1.30

Fuente: HILDA GARAY, JORGE ALVA 2010

Ensayo de Pinhole (ASTM D 4647-93, USBR 5410-90)

El Ensayo del Pinhole fue desarrollado para una medida directa de la erosionabilidad de los suelos de grano fino compactados y consiste en hacer fluir agua a través de un pequeño agujero en un espécimen de suelo donde el flujo de agua a través del Pinhole simula el flujo del agua a través de una grieta u otra estructura. (GARAY & ALVA, 2010)

Un agujero del 1 mm de diámetro es introducido o taladrado a través de un espécimen de suelo cilíndrico de 25 mm de largo por 35 mm de diámetro. Agua destilada es percolada a través del Pinhole bajo una carga de 50, 180 y 380 mm de agua y la velocidad con el efluente y la turbidez quedan registrados. Las cargas de 50, 180 y 380 mm resultan en flujos con velocidades de rangos aproximadamente de 30 a 160 cm/s y con gradientes hidráulicos en rangos aproximadamente desde 2 a 15.

El ensayo fue desarrollado por Sherard et al (1976) y en pocos años se ha convertido en un ensayo físico ampliamente usado. Es importante que el ensayo sea hecho sobre suelo con contenido de humedad natural, porque secándolo podría afectar los resultados. Si el material contiene partículas gruesas de arena o grava, éstas deben ser eliminadas tamizando la muestra a través del tamiz de 2 mm (Nº 10). El contenido de humedad natural debe ser determinado y el contenido de agua deseado para la compactación debe alcanzarse agregando la cantidad de agua requerida (o gradualmente secándolo al aire, sí está demasiado mojado). Toda el agua añadida debe ser agua destilada. (GARAY & ALVA, 2010)

RESULTADOS DE ENSAYOS

En la Tabla #1. 8 se muestran los resultados previos a los ensayos para cada una de las muestras investigadas. Con las muestras 4 y 5 no se realizó el ensayo de compactación, debido al poco material con que se contaba para el ensayo.

Tabla # 1.8: Características de los Suelos Analizados

MUESTRA CLASIF		CLASIFICACION	ASIFICACION PESO ESPECIFICO	LIMITES DE ATTERBERG		PROCTOR ESTANDAR DE COMPACTACION		
l N∘ ω(ω (%)	sucs sucs	(Gs)	LIMITE LIQUIDO	LIMITE PLASTICO	INDICE DE PLASTICIDAD	Υ¢	ОСН
1	7,93	SC	2,695	35,25	23,56	11,69	1,869	12,80
2	4,93	SC	2,710	37,00	17,91	19,09	1,803	16,00
3	15,81	CL	2,700	27,90	18,04	9,86	1,875	14,00
4	21,12	CL	2,623	32,32	20,30	12,02		
5	16,44	CL	2,710	39,69	18,69	21,00		
6	3,44	CL	2,707	28,32	14,14	14,18	1,883	12,90
7	27,81	CL	2,762	45,40	26,06	19,34	1,527	26,20

Fuente: (GARAY & ALVA, 2010)

En la Tabla # 1.9 se puede apreciar los resultados de dispersión de las muestras indicadas. Cabe mencionar que el Ensayo de Pinhole se realizó con varios tiempos de curado, remoldeado al contenido de humedad natural para las muestras 4 y 5, en las que no se contaba con los datos del grado óptimo; para el resto se evaluó al contenido del óptimo sin curar y con tiempos de curado de 24 horas, 48 horas y 7 días. (GARAY & ALVA, 2010)

La nomenclatura empleada para clasificar un suelo dispersivo de acuerdo a la Norma del Ensayo de Pinhole según el Método A y C es la siguiente:

- Dispersivo (D1,D2),
- Dispersivo leve a moderado (ND4,ND3) y
- No dispersivo (ND2, ND1).

Tabla # 1.9: Resultados de los Ensayos de Dispersión

MUESTRA N∘	ENSAYO DE CRUMB	ENSAYO DEL DOBLE HIDROMETRO	ENSAYO DE PINHOLE TEST	
	GRADO 2	DISPERSIVO	ND3³	
1			ND4⁴	
			ND1 ⁵	
2	GRADO 1	NO DISPERSIVO	ND1³	
3	GRADO 3	NO DISPERSIVO	D2"	
			D2³	
			ND4⁴	
			ND4⁵	
			ND1 ⁶	
4	GRADO 3	NO DISPERSIVO	D2"	
			ND2⁴	
5	GRADO 1	INTERMEDIA DISPERSION	ND3³	
6	GRADO 1	INTERMEDIA DISPERSION	ND"	
			ND1⁴	
			ND1⁵	
7	GRADO 1	NO DISPERSIVO	ND1³	

Fuente: (GARAY & ALVA, 2010)

Luego de estos resultados, podemos concluir:

- Las muestras 2 y 7 no son dispersivas
- La dispersión del resto de las muestras varía de ligera a alta
- El tiempo de curado en el estado compactado de los especímenes influye en los resultados del ensayo de Pinhole Test. A un mayor tiempo de curado, el suelo tiende a ser menos dispersivo. (GARAY & ALVA, 2010).

1.1.10. INCIDENCIAS DE LOS SUELOS DISPERSIVOS Y COLAPSABLES

Según la Granulometría y Textura.

Los suelos son favorables (tienen mayor capacidad de carga) cuando la mayoría de sus componentes son gruesos como las rocas, gravas, grava arenosa y grava limosa, grava arenosa arcillosa y arenas gravosas.

Son no favorables (tienen menor capacidad de carga, se deforman) cuando son finos. En esta calificación se encuentran los suelos arenosos, suelos limosos y suelos arcillosos. (Carlos, 2009)

Según el Peso específico.

El peso específico se refiere a cuánto pesa una porción de un tipo de suelo. Nos indica cuanto vacío tiene en su interior; será más pesado mientras menos espacios vacíos tengan. Esto también influye en su estabilidad. Entre mayor sea el peso unitario de un suelo, mejor es la calidad de éste.

Si la mayoría de los componentes del suelo son homogéneos; entonces, el suelo no es favorable, porque tienen muchos vacíos y poco peso unitario. Si el suelo tiene variedad de tamaños; o sea es heterogéneo, el suelo es favorable. (Carlos, 2009)

Según el grado de consolidación o compactación

Los suelos con el tiempo y la exposición a los fenómenos naturales cambian su grado de consolidación haciéndose más compactos (suelos firmes o compactos) o más sueltos (suelos sueltos o blandos), según el proceso que los afecte. Los suelos firmes, compactos, consolidados y de buena calidad para la edificación son duros y difíciles de excavar. Son suelos blandos (no consolidados) y de baja calidad para la edificación, aquellos que son sueltos y fáciles de excavar. Estos suelos no son favorables. También son suelos no aptos para la construcción aquellos suelos que hayan sido arrastrados por el viento o la lluvia; a éstos se le conoce como material de relleno natural. Lo mismo sucede con los suelos sobre rellenos no controlados, es decir cuando el hombre ha cortado con maquinaria pesada un cerro o ladera y los materiales de corte son acumulados al lado sin alcanzar un adecuado grado de compactación. (Carlos, 2009)

Según el grado de saturación de agua

La presencia de agua en el suelo influye en su estabilidad y puede cambiar su capacidad de carga y su comportamiento frente a sismos. La calidad de éste disminuye en función de la cantidad de agua que contiene y del tipo de componentes que predominan. Los suelos gruesos son más estables que los suelos finos ante la presencia de agua. El grado de saturación está influenciado por el nivel de la capa freática. (Carlos, 2009)

Según el nivel freático superficial.

La capa freática es la capa de agua subterránea y su nivel puede cambiar desde lo superficial a lo profundo. Cuando el nivel freático es superficial (a menos de 2 metros de profundidad) en relación a la superficie del suelo, este suelo es malo; pero si es muy profundo, entonces el suelo puede ser más estable y favorable. (Carlos, 2009)

Según la plasticidad, expansibilidad y dispersibilidad.

Son propiedades de suelo que se refieren a la facilidad de cambiar su volumen con la presencia de agua. La mayoría de suelos finos como: limos, arcillas y sus combinaciones, se alteran en contacto con el agua, convirtiéndose en suelos problemáticos o especiales, no aptos para la construcción u obras en general. (Carlos, 2009).

Así tenemos:

La Plasticidad (suelos plásticos)

Es la propiedad por la cual el suelo al humedecerse, disminuye su cohesión, se deforma fácilmente y pierde totalmente su resistencia mecánica o capacidad de carga. Reconocer estos suelos no son favorables para la construcción es muy simple: solo tenemos que humedecerlo y ver si se forma un barro que nos permite hacer trabajos cerámicos, entonces éste es un suelo plástico.

Expansibilidad de suelos (suelos expansivos)

Esta propiedad consiste en el aumento considerable de su volumen a consecuencia de cambios de humedad, así como por la disminución de la carga al extraer suelo por excavación, secado del suelo por incremento de la temperatura. Este fenómeno es propio de los suelos con presencia de arcillas expansivas.

Dispersibilidad de suelos (suelos dispersivos)

Esta propiedad caracteriza a los suelos con contenidos de sales solubles. Consiste en la separación de todos los componentes del suelo a consecuencia de la humedad. El agua es el agente que produce este fenómeno al disolver las sales y forma escamas de suelo que se dispersan lámina tras lámina. Al final el suelo se diluye originando espacios vacíos provocando el hundimiento de la superficie.

Suelos colapsables.

Se les llama así cuando los suelos pierden su estructura y cohesión y sufren una disminución notoria de su volumen como consecuencia de haber recibido una cantidad de agua adicional.

Suelos con material orgánico.

Son aquellos que contienen raíces, carbón, guano u otros materiales de origen orgánico. Son suelos de mala calidad para edificación que deben ser retirados en su totalidad: si se corta el terreno y se les sigue encontrando, entonces no se podrá construir.

Influencia de la topografía en la estabilidad de suelos.

Los terrenos con pendientes pronunciadas son susceptibles a la ocurrencia de fenómenos como: deslizamientos, derrumbes, amplificación sísmica, entre otros. (Carlos, 2009).

Deslizamientos.

Son movimientos de masas de suelos producidos por vibraciones sísmicas o sobrepeso por agua, pueden causar grandes daños a personas o propiedades. Los suelos susceptibles a deslizamientos son aquellos sueltos, descompuestos y saturados de agua que actúa como lubricante, produciendo el deslizamiento. También se pueden producir derrumbes, caídas de rocas, desplazamientos laterales, etc. Los deslizamientos resultan también por corte de taludes al construir carreteras, terrazas y otras obras sin considerar el ángulo de reposo de los materiales. (Carlos, 2009)

Amplificación sísmica.

Se refiere a la mayor duración del periodo de vibración del suelo a consecuencia de un sismo. Un sismo se sentirá con mayor intensidad en aquellos lugares con pendiente

pronunciada debido al fenómeno de rebote o interrupción del deslizamiento de la onda sísmica por efecto topográfico. (Carlos, 2009)

El lugar más seguro para construir es sobre un suelo resistente que cumpla todas las condiciones descritas en la tabla siguiente:

Tabla #1.10: Condiciones favorables y no favorables de un suelo

Criterio utilizado	SUELOS FAVORABLES Adecuado para construir	SUELOS NO FAVORABLES No apto para construir
Granulometría/textura	Gruesas	Finas
Color del suelo	Gris	Rojo, amarillo, blanco.
Forma de las partículas	Angulosas	Redondeadas
Peso unitario	Pesado	Liviano
Granulometría	Varios tamaños	Homogéneo
Preconsolidación	Compacto y firme	Blando o suelto
Nivel freático	Sin agua o profunda	Superficial
Plasticidad	No plástico	Plástico
Expansión	No expansivo	Expansivo
Dispersión	No dispersivo	Dispersivo
Colapsable	Estable	Colapsable
Material orgánico	Sin material orgánico	Con material orgánico

Fuente: (Carlos, 2009)

1.1.11. SOLUCIONES TECNICAS ANTE LA PRESENCIA DE SUELOS COLAPSABLES Y DISPERSIVOS.

SUELOS COLAPSABLES:

Muchos de los fenómenos que determinan el comportamiento de los suelos son complejos y no pueden siempre reducirse a causas puramente mecánicas, sino que muchas veces intervienen factores de otra índole (químicos, ambientales, etc.) provocando un comportamiento singular del terreno .En algunos suelos, estos factores "no mecánicos" tienen una importancia capital y son objeto de un estudio particular.

Dicho grupo de suelos es conocido genéricamente como "suelos estructuralmente inestables". (AVILA, 2015)

Uno de los principales fenómenos que afectan a algunos de estos es el colapso brusco de su estructura intergranular, denominándose a los suelos que se presenten estas características: suelos colapsables. En estas notas se analizaran exclusivamente aquellos suelos en los cuales el colapso es provocado por humedecimiento. (AVILA, 2015)

ALTERNATIVA DE SOLUCION:

• Método de mejoramiento de las propiedades del suelo por modificación de su granulometría.

En este apartado se incluyen aquellos métodos de estabilización consistentes en la mezcla y posterior compactación de suelo colapsables con otros materiales (arena, gravas) a efectos de conseguir mayor resistencia y mayor rigidez. Este tipo de estabilización es de amplio uso en la ingeniería vial, en la construcción de bases y sub-bases.

• Método de mejoramiento por medio del reemplazo del suelo colapsable por suelo no colapsable.

Este tipo de estabilización se realiza principalmente en terrenos con suelos potencialmente colapsables, en los cuales la presencia de cargas adicionales en superficie puede generar asentamientos adicionales ante un incremento de la humedad del suelo. Así, una parte del suelo colapsable superficial, ubicado directamente debajo de las fundaciones, es excavado, extraído y reemplazado por otro material más componente. (AVILA, 2015)

Los materiales generalmente utilizados son los siguientes: el mismo suelo extraído, compactado y eventualmente estabilizado granulométricamente: arena compactada o suelo cemento compactado. La elección del tipo de material está condicionada generalmente por variables técnico económica. Los espesores de estos mantos son variables (1 a 4m) dependiendo del tipo de cargas y de las características del proyecto. Por ejemplo en algunos proyectos, los condicionantes pueden ser los asentamientos diferenciales (edificios), en cambio en otros (canales), no solo

importa disminuir la probabilidad que se produzca el colapso, sino también lograr una capa de suelo más impermeable. Este tipo de metodología ha sido utilizada con éxito en numerosos países y en innumerables tipos de obras. También es frecuente el empleo de esta metodología en forma conjunta con otro tipo de estabilización profunda, cuando se presentan mantos de suelos colapsables profundos y con espesores muy dispares. (AVILA, 2015)

• Métodos de mejoramiento de las propiedades del suelo por compactación

Este grupo comprende varias de las metodologías usadas en suelos colapsables para reducir los vacíos, de modo de eliminar la colapsabilidad, reducir la permeabilidad y aumentar la capacidad de carga. Esto se realiza utilizando fuerzas estáticas o dinámicas, o bien a través, de la inyección de lechadas. (AVILA, 2015)

SUELOS DISPERSIVOS

Las arcillas dispersivas son aquellas que por la naturaleza de su mineralogía y la química del agua en los suelos, son susceptibles a la separación de las partículas individuales y a la posterior a través de grietas en el suelo bajo la filtración de flujos. Estas arcillas erosionan rápidamente en presencia del agua cuando las fuerzas repulsivas que actúan entre las partículas de arcilla exceden a las fuerzas de atracción (Van der Waals) de tal forma que las partículas son progresivamente separadas desde la superficie entrando a una suspensión coloidal. Por esta razón estas arcillas "defloculadas", "dispersivas "o "erodibles ". Son suelos altamente erosivos a bajos gradientes hidráulicos del flujo de agua, e incluso en algunos casos en agua en reposo. (AVILA, 2015).

ALTERNATIVA DE SOLUCION:

A continuación se mencionaran las diversas soluciones para mitificar el problema de los suelos dispersivos para la construcción y la agricultura según el Autor (AVILA, 2015)

 Este tipo de suelo, padece una destrucción de su estructura, y por tanto al disminuir su porosidad, utilizar el lavado para su corrección no es muy aconsejable, debido a la deficiencia de su drenaje. La recuperación, por tanto, tiene que ser abordada mediante la eliminación de sodio de cambio (rebajar el pH) aplicando yeso, cal viva, entre otros productos, que reaccionarían con el carbonato sódico, formando carbonato cálcico y sulfato sódico (álcali blanco). Es necesario implantar cultivos, a ser posible de regadío y resistentes a las sales, así como la incorporación de enmiendas orgánicas.

- La enmienda con yeso representa una alternativa adecuada para corregir problemas de suelos dispersivos .La adición de yeso, mediante la disminución del Na intercambiable , produce una recuperación en la condiciones físicas del suelo, repercutiendo en un incremento de la productividad de forraje y posibilitando una mejor utilización del fertilizante por parte del cultivo.
- En la agricultura, se utilizan fertilizantes de bajo contenido sódico y mayor contenido de calcio s fin de abonar el suelo y reducir su salinidad, Si el agua de riego es de baja calidad, se recomienda utilizar bajas dosis de fertilizante pero aplicarlo frecuentemente.
- Cuando se ha identificado la extensión y la profundidad de la zona dispersiva se puede proceder a la remoción del suelo erosionable, siempre que este procedimiento sea económicamente factible.
- Para las carreteras se utiliza una combinación de drenajes, sub-drenajes, pavimentos, impermeables y reglamentos para el uso del agua con el fin de crear una restricción severa del humedecimiento.
- En un terraplén debidamente gradado se puede realizar un "recubrimiento impermeable" este recubrimiento se realiza colocando una capa doble geotextil impermeable debajo, y geotextil no tejido encima.
- En las laderas con una pendiente <20% se realiza un recubrimiento vegetativo que consiste en sembrar especies vegetales sobre geomalla, diseñada para el efecto, con restricciones laterales en maderas o cañas colocadas paralelamente a la curva de nivel.

CAPITULO II

2. ESTUDIO DE CAMPO

2.1 ANTECEDENTES INVESTIGATIVOS.

2.2 UBICACIÓN

El desarrollo del presente estudio se llevó a cabo en los diferentes sectores de la ciudad de Manta.



Figura # 2.31: ZONAS DE DONDE SE OBTUVIERON LAS MUESTRAS AUTORES: Vásquez Leslie Y Fajardo Shirley

2.3 MODALIDAD DE LA INVESTIGACION

La modalidad de esta investigación es de campo, debido que la información obtenida se dio por recopilación de instrumentos de exploración como:

Observación directa e investigativa

Ensayos de laboratorio.

2.4 TIPO DE INVESTIGACION

Para el desarrollo de este estudio se estableció y se aplicó a la investigación el método experimental y el hipotético- deductivo.

2.4.1 De campo

La investigación de campo, fue necesaria en el proceso de observación y la obtención del material situado en los diferentes puntos de la cuidad de Manta, a fin de recopilar muestras que serán analizados en el laboratorio de suelos.

2.4.2 Investigación de Laboratorio de suelos

En esta investigación fue de suma importancia utilizar el laboratorio para realizar los ensayos descritos en la investigación de campo. Para obtener los resultados del material es necesario aplicar los siguientes ensayos:

GRANULOMETRÍA, PINHOLE TEST,
HUMEDAD NATURAL, DOBLE HIDRÓMETRO,
LÍMITES DE ATTERBERG, CRUMB,
PESO ESPECÍFICO,
PESO VOLUMÉTRICO,

2.5 MATERIALES Y EQUIPOS

Se muestra a continuación en las siguientes tablas los materiales utilizados en la investigación de campo, laboratorio de suelos.

2.5.1 Ensayos de Laboratorio

Humedad natural:

Tabla #2.11: Equipos utilizados en ensayo de humedad natural

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	δ
Horno	1	δ
Balanza digital	1	δ
Cuchareta de metal	1	δ
Taras (vasos de aluminio)	50	δ

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Granulometría:

Tabla # 2.12: Equipos utilizados en ensayo de granulometría

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	δ
Cocineta a gas	1	δ
Horno	1	δ
Balanza digital	1	δ
Tamices #4, #10,#40 y #200	5	δ
Platos de aluminio	10	δ

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

Límites de Attenberg

Límite Líquido:

Tabla #2.13: Equipos utilizados en ensayo de límite líquido

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestreo)	16	δ
Capsula de aluminio	1	δ
Horno	1	δ
Balanza digital	1	δ
Espátula	1	δ
Cuenta gotas	1	δ
Copa de casa grande	2	δ
Taras (vasos de aluminio)	50	δ
Ranurador	1	δ
Franela	2	δ

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Límite Plástico:

Tabla # 2.14: Equipos utilizados en ensayo de límite plástico

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	δ
Horno	1	δ
Balanza digital y manual	2	δ
Placa de vidrio	1	δ
Taras (vasos de aluminio)	35	δ
Latas para contenido de humedad	30	δ

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

Peso Específico:

Tabla # 2.15: Equipos utilizados en ensayo de peso específico

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	δ
Balanza digital	1	δ
Probeta de 1000 ml	1	δ
Agua destilada	10	δ
Removedor	1	δ

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Peso volumétrico:

Tabla # 2.16: Equipos utilizados en ensayo de peso volumétrico con parafina

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	δ
Balanza digital	1	δ
Balanza manual	1	δ
Parafina	10	δ
Removedor	1	δ
Cocineta a gas	1	δ
Recipiente de aluminio	2	δ
Balde con agua	1	δ
Piola con plomada	1	δ
Cuchareta de aluminio	2	δ

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Pinhole test:

Tabla # 2.17: Equipos utilizados en ensayo de pinole test

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	Δ
Cilindro	1	Δ
Malla metálica	1	Δ
Soporte calibrado	1	Δ
Probeta graduada	1	Δ
Tuberías	1	Δ
Gravilla	1	Δ
Compactador	1	Δ
Tamiz #10	1	Δ
Agua destilada	1	Δ
Espátula	1	Δ
Cronometro	1	Δ

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

Doble hidrómetro:

Tabla # 2.18: Equipos utilizados en ensayo de doble hidrómetro

EQUIPOS	CANTIDAD	OBSERVACION
Formato (datos del muestra)	16	Δ
Probeta 1000ml	2	Δ
Hidrómetro	1	Δ
Dispersador	1	Δ
Termómetro	1	Δ
Agitador	1	Δ
Cronometro	1	Δ

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Observación: Los elementos que tienen la simbología (\mathfrak{F}) pertenecen al Laboratorio de la Carrera de Ingeniería Civil de la ULEAM y los que tienes esta simbología (\mathfrak{F}) pertenecen al Laboratorio de Suelos de Santa Elena de la UPSE.

2.6 TOMA DE MUESTRAS

En la exploración visual de campo que se tuvo al obtener las muestras para ser llevadas al laboratorio de suelos, se tomaron las muestras en varios sectores de Manta las cuales se detalla:

VÍA INTERBARRIAL – BARRIO 5 DE AGOSTO (3 MUESTRAS)

Figura #2.32: Toma de muestras en la vía interbarrial Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

COLISEO TOHALLI – VÍA SPONDYLUS (1 MUESTRA)

Figura #2.33: Toma de muestras en coliseo tohalli Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

AVENIDA LA CULTURA – AVENIDA INTERBARRIAL (1 MUESTRA)

Figura # 2.34: Toma de muestras en la vía la cultura - interbarrios Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

GASOLINERA PRIMAX – VÍA CIRCUNVALACIÓN (1 MUESTRA)

Figura # 2.35: Toma de muestras en la gasolinera Primax Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

CONECTOR VÍA CIRCUNVALACIÓN – SAN MATEO ATRÁS DE MANTA 2000 (1 MUESTRA)

Figura # 2.36: Toma de muestras en el conector vía circunvalación —san mateo Autores: Vásquez Naranjo Leslie — Fajardo Cobeña Shirley

RUTA DEL SPONDYLUS – LLEGADA A SAN MATEO (1 MUESTRA)

Figura # 2.37: Toma de muestras en la llegada a san mateo Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

SANTIAGO ARAUZ – FRENTE ADOQUINES (1 MUESTRA)

Figura #2.38: Toma de muestras en la zona Santiago Arauz Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

SAN MATEO – U.E. RIOBAMBA (1 MUESTRA)

Figura # 2.39: Toma de muestras en San mateo U.E. Riobamba Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

VÍA ROCAFUERTE – AL LADO DEL PUENTE km 41/2 (1 MUESTRA)



Figura # 2.40: Toma de muestras al lado del puente Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

VÍA ROCAFUERTE KM 41/2 (1 MUESTRA)

Figura # 2.41: Toma de muestras en la vía Rocafuerte Autores: Vásquez Naranjo Leslie — Fajardo Cobeña Shirley

MUELLE JARAMIJO (1 MUESTRA)

Figura #2.42: Toma de muestras en Muelle Jaramijo Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

CARRETERA NUEVA DE LA REFINERÍA (2 MUESTRAS)

Figura #2.43: Toma de muestras en la nueva carretera de la refinería Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

SECTOR LA FABRIL – DIAGONAL A INDUMASTER (1 MUESTRA).

Figura #2.44: Toma de muestras en sector La fabril - Indumaster Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Las muestras extraídas fueron colocadas en sacos y para identificarlas se colocó sus respectivos detalles, para luego ir llevadas al laboratorio de suelos y por ende hacer sus respectivos ensayos.

2.7 PROCEDIMIENTO DE ENSAYOS DEL LABORATORIO

2.7.1 Ensayo de Humedad Natural

Para determinar el contenido de humedad natural de las muestras de suelos se llevó a cabo lo siguiente.

Procedimiento:

- **a.)** Las muestras obtenidas de la extracción de los suelos inalterados se los coloco en costalillos para ser llevados al laboratorio y ser analizados.
- **b.)** En el momento se son llevadas al laboratorio se toman 100gr de material para ser pesadas individual respectivamente.

Figura #2.45: Pesando del Material Fuente: Laboratorio de suelos (Uleam)

c.) Estas muestras son llevadas al horno para ser sometidas a una temperatura de $110^{\circ}\text{C} \pm 5^{\circ}\text{C}$ por 24 horas.

Figura #2.46: Secado del Material Fuente: Laboratorio de suelos (Uleam)

d.) Una vez pasadas las 24 horas se toma las muestras sacadas del horno y se las pesan respectivamente el material seco.

Figura #2.47: Anotación del peso del Material Fuente: Laboratorio de suelos (Uleam)

e.) Luego de ser pesadas se efectúan los cálculos correspondientes.

En la tabla #3.23 se muestra los resultados de dichas muestras, con los cálculos correspondientes para hallar el porcentaje de humedad natural de los suelos, del mismo que se obtiene el promedio de las muestras obtenidas, del cual es la siguiente formula:

Ww = TWsh - TWss

$$Ws = Wsh - T$$

Dónde:

TWss = Tara + peso del suelo seco

TWsh = Tara + peso del suelo húmedo

Ww = peso del agua

Ws = Peso del suelo

Estos resultados permitirán el porcentaje del peso del agua para conocer en qué estado de humedad natural se encuentra los suelos obtenidos.

$$W\% = \frac{Ww}{Ws} * 100$$

Dónde:

Ww = peso del agua

Ws = peso del suelo seco

W% = porcentaje de humedad

En este procedimiento se optó por realizar 2 muestras, con la finalidad de obtener un promedio de las dos muestras y completar los resultados que se muestran en las tablas # del % de humedad natural de los suelos obtenidos en campo.

Tabla # 2.19 Formato De Cálculo

	CONTENIDO DE HUMEDAD				
		MUESTRA N°			- %
		Lugar			/0
		Tara N°			
Р	ď	Tara + Suelo húmedo	gr.		
е	g r	Tara + Suelo seco	gr.		
S O	а	Tara	gr.		
	m	Agua	gr.		
е	o s	Suelo seco	gr.		
n	3	Contenido de humedad	%		0,00

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

2.7.2 Ensayo de Granulometría

Para realizar este ensayo fue de importancia contar con el equipo necesario, del cual se lo adquirió del Laboratorio de Suelos de la carrera de Ingeniería Civil de la ULEAM, el procedimiento fue el siguiente.

Procedimiento:

- **a.)** De las muestras obtenidas en estado natural se tomó un porcentaje arbitrario de suelo para realizar el ensayo.
- **b.)** Las muestras fueron secadas en una cocina con estufa para poder realizar el ensayo respectivo y facilitar el tamizado.

Figura #2.48: Secado de la muestra Fuente: Laboratorio de suelos (Uleam)

- **c.)** Una vez seco el material respectivo se procedió a tomar 100gr. para realizar el ensayo de granulometría.
- **d.)** Los 100gr. obtenidos se procedió a lavar por el tamiz # 200 para eliminar el material fino (limo-arcilla).

Figura #2.49: Lavando el Material Fuente: Laboratorio de suelos (Uleam)

- e.) Se procedió a secar el material que fue retenido en el tamiz# 200.
- **f.)** Este material se los pasa por el tamiz #4, # 10, #40, #200.

Figura #2.50: Tamices Utilizados Fuente: Laboratorio de suelos (Uleam)

g.) Luego se pesó el material que retuvo en cada tamiz, y la diferencia de los 100gr. con la suma de los pesos retenidos en cada tamiz se determina el material que se perdió por el tamiz #200 el cual fue lavado.

Tabla#2.20: Formato De Cálculo

GRANULOMETRIA								
TAMIZ	PESO RETENIDO	PESO ACUMULADO	% RETENIDO	% ACUMULADO	% PASA	ESPECIFICACIONES		
4"								
3"								
2"								
1 1/2"								
1"								
3/4"								
1/2"								
3/8"								
4								
8								
10								
16								
30								
40								
50								
100								
P# 200								
200								
TOTALES:								

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

2.7.3 Ensayo de Plasticidad

2.7.3.1 Ensayo de Límite Plástico

Procedimiento:

a.) Tomamos aproximadamente 200gr. de material seco resultante, el cual fue tamizado por el tamiz #40, y se lo mezclo con agua hasta obtener una masa homogénea.

Figura #2.51: Tamizado y material homogenizado en la casa grande Fuente: Laboratorio de suelos (Uleam)

b.) El material homogenizado se colocó en la casa grande, tomando en cuenta la cantidad de golpes que recibe la cuchara, hasta que el surco se cierre con el material esparcido. Para este ensayo se utilizó de 30 golpes la primera muestra, de 18 a 22 golpes la segunda muestras y de 9 a 10 golpes la tercera muestra.

Figura #2.52: Material colocado en la casa grande

Fuente: Laboratorio de suelos (Uleam)

c.) El material que resulto según los golpes de la cuchara se colocaron en 2 vasos de aluminio para ser pesados respectivamente en la balanza digital y obtener los datos para el cálculo correspondiente.

Figura #2.53: Material colocado en vasos de Aluminio Fuente: Laboratorio de suelos (Uleam)

- **d.)** Luego estas muestras fueron colocadas en el horno a una temperatura de 110° C \pm 5°C por 24 horas.
- **e.)** Después haber pasado las 24 horas las muestras son retiradas del horno y se vuelven a pesar en la balanza para determinar los valores de humedad.

A continuación se detalla las formulas aplicadas en el cálculo:

$$Wms = (Wms + V) - V$$

Dónde:

Wms = Peso de la muestra seca

V = vasija

$$Wp = (Wmh + V) - (Wms + V)$$

Dónde:

 $\boldsymbol{Wp} = Peso \ perdido$

Wmh = Peso muestra húmeda

Wms = Peso de la muestra seca

V = vasija

%H = Wp/Wms

Dónde:

%H = porcentaje de humedad

Wms = Peso de la muestra seca

 $\mathbf{Wp} = Peso \ perdido$

Estos cálculos fueron realizados de acuerdo al número de golpes aplicados con la Casagrande.

2.7.3.2 Ensayo de Límite Líquido

Procedimiento:

- **a.)** Con las muestras preparadas de acuerdo con la prueba de límite líquido; en el momento de pasar al estado plástico al semisólido, esta humedad permite enrollar al suelo con la mano hasta que se pierda la humedad.
- **b.)** Estos pequeños rollos de suelo se lo moldea con los dedos sobre una placa de vidrio liso, con movimientos hacia adelante y hacia atrás hasta obtener un diámetro de 3mm aproximadamente y se forme un rollito hasta el punto que se presente pequeñas grietas.

Figura #2.54: Material enrollado.

Fuente: Laboratorio de suelos (Uleam)

- **c.)** Todas estas muestras obtenidas fueron colocadas en taras de aluminio para luego ser pesadas respectivamente.
- **d.)** Luego estas muestras fueron colocadas en el horno a una temperatura de 110° C \pm 5°C por 24 horas.

e.) Después haber pasado las 24 horas las muestras son retiradas del horno y se vuelven a pesar en la balanza.

Figura #2.55: Material pesado en la balanza digital Fuente: Laboratorio de suelos (Uleam)

A continuación se detalla las formulas aplicadas en el cálculo:

$$Wms = (Wms + V) - V$$

Dónde:

Wms = Peso de la muestra seca

V = vasija

$$Wp = (Wmh + V) - (Wms + V)$$

Dónde:

Wp = Peso perdido

Wmh = Peso muestra húmeda

Wms = Peso de la muestra seca

V = vasija

$$%H = Wp/Wms$$

Dónde

 $% \emph{\textbf{\textit{H}}} = Porcentaje de humedad$

Wp = Peso perdido

$$%H = Wp/Wms$$

Para conocer el Índice de plasticidad se utiliza la siguiente fórmula:

$$Id = LL - LP$$

Dónde:

Id =Índice de plasticidad

LL = Límite líquido

LP = Límite plástico

Tabla #2.21: Formato de Calculo

LIMITE LIQUIDO (ASTM D4318)							
N°	Ν°	PESO	PESO	PESO	%		
TARA	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD		

LIMITE PLASTICO (ASTM D4318)

N°	PESO	PESO	PES0	%
TARA	HUMEDO	SECO	TARRO	DE HUMEDAD
		PROMEDIO		0,00

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

2.7.4 Ensayo de Peso Especifico

Procedimiento:

- a.) En este ensayo se tomó 300gr. de muestra para adquirir su peso específico.
- **b.)** Se procede a pesar la probeta de 500ml.

Figura #2.56: Pesando la probeta en la balanza digital

Fuente: Laboratorio de suelos (Uleam)

- **c.)** Por consiguiente se le va colocando el agua destilada hasta llegar a la línea de aforo y determinar el peso dado por la balanza.
- **d.)** Luego se va colocando los 300gr. de material en la probeta y dando ligeros movimientos para que las partículas del material y agua se homogenicen entre sí, hasta la línea de aforo.

Figura #2.57: Dando ligeros movimientos al material Fuente: Laboratorio de suelos (Uleam)

e.) Una vez quedado el material mezclado en la probeta se procede a pesarlo en la balanza digital y determinar su peso, para luego hacer los cálculos respectivos en el formulario.

Figura #2.58: Pesando la probeta con el material Fuente: Laboratorio de suelos (Uleam)

A continuación se detalla las formulas aplicadas en el cálculo:

$$Ge = \frac{ws}{wfw + ws - wf}$$

Dónde:

Ge: Peso especifico

Es: Peso del material

Wfw: Peso de la probeta + agua

Wf: Peso de la probeta + agua + material

2.7.5 Ensayo de Peso Volumétrico

Procedimiento:

- a.) Una vez explorado en campo se extrae terrones del mismo suelo a investigar.
- **b.)** Se procede a pesar el terrón y se anota en la hoja de cálculo su peso respectivo.

Figura #2.59: Pesando los terrones Fuente: Laboratorio de suelos (Uleam)

c.) Luego a la parafina se la derrite en la cocineta para que su consistencia sea liquida para poder recubrir a los terrones, se prosigue a pesarlo en la balanza y se obtiene el segundo peso.

Figura #2.60: Derritiendo la parafina y envolviendo a los terrones

Fuente: Laboratorio de suelos (Uleam)

d.) Posteriormente se la pesa bajo el agua por medio de una balanza calibrada y se obtiene su tercer peso.

Figura #2.61: Sumergiendo los terrones en agua Fuente: Laboratorio de suelos (Uleam)

e.) Se procede a calcular su peso volumétrico.

A continuación se detalla las formulas aplicadas en el cálculo:

$$d = b - a \qquad \qquad e = \frac{d}{0.89} \qquad \qquad Pu = \frac{a}{b - c - e}$$

Dónde:

a = Peso del material en el aire

 $\mathbf{b} = \text{Peso del material} + \text{parafina}$

 \mathbf{c} = Peso del material + parafina + agua

d = Peso de la parafina utilizada

e = Volumen de la parafina utilizada

Densidad de la parafina = 0.89

2.7.6 Ensayo de Crumb

Procedimiento:

- 1. Se colocó una muestra de suelo en agua destilada, mientras la muestra se comienza a hidratar.
- **2.** Se observa que las partículas coloidales empiezan a de flocularse durante 24 horas de inmersión, y se tiene como resultado la siguiente interpretación.
 - GRADO1.Ninguna reacción
 - GRADO2.Reaccion ligera
 - GRADO3.Reaccion moderada
 - GRADO4.Reaccion fuerte

En este ensayo se determinó que las muestras obtenidas presentaron grado 1 y grado 2.

Figura #2.62: Material hidratado Fuente: Laboratorio de suelos (Uleam)

2.7.7 Ensayo de Pinhole Test

Procedimiento:

En la caracterizacion de Suelos Dispersivos ASTM D4647 hay tres maneras de desarrollar en el laboratorio,a continuacion el procedimiento del metodo A", ya que es la mas variada de clasificacion.

Clasificacion Metodo A".

- D1-D2 Arcillas dispersivas que fallan rapidamente bajo una cabeza hidraulica de 50mm.
- ND4-ND3 Arcillas con características bajas o moderadas de dispersion, con cabezas hidraulicas entre 50mm a 180mm.
- ND1-ND2 Arcilla nno dispersiva con baja erosion, cabezas hidarulicas entre 180mm a 1020 mm de presion.
- 1. Se compacta la probeta de 40mm dentro del cilindro de la prueba, con la muestra restante hallar el contenido de humedad. La compactación se hace con el dispositivo Army, con el cual se deben hacer 12 ascensos con una masa de 0.5kg.
- 2. Insertar el cono guía en la parte superior, ejerciendo presión, luego insertar la aguja por el cono y se presiona hasta penetrar la probeta. Se debe realizar unos giros antes de retirar la aguja es necesario para tener un buen orificio.

Figura #2.63: Material y equipos Fuente: Laboratorio de suelos (Upse)

3. Se ubican 2 mallas en la parte en frente y posterior se agrega el material previamente lavado y luego ubicar las 2 mallas restantes sobre los extremos del

cilindro, ajustar las 2 placas mediante los tornillos y garantizar un cierre hermético del dispositivo.

4. Ubicar el depósito en forma horizontal y acoplarlo al manómetro.

Figura #2.64.: Compactacion del Especimen Fuente: Laboratorio de suelos (Upse)

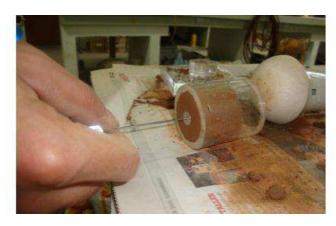


Figura #2.65: Perforación del Espécimen Fuente: Laboratorio de suelos (Upse)

Figura 2.66: Mallas y Elementos de Ajuste Fuente: Laboratorio de suelos (Upse)

Figura #2.67: Dispositivo Pinhole Fuente: Laboratorio de suelos (Upse)

- 5. Se comienza con una cabeza hidraulica de 50mm de presion, y se registra el tiempo de inicio.Registrar los volumenes de agua recogidos al cabo de dos ,cuatro, cinco, seis , ocho y diez minutos asi como el estado de turbidez del agua.Si al momento de iniciar la prueba no hay indicio de la salida de flujo detener la prueba y revisar la muestra.
- **6.** Empezamos con una cabeza hidraulica de 50mm de presion durante 5 minutos ,si el efluente que ha salido es oscuro y el caudal a estado entre los valores de 1.0 a 1.4m/s la pruba esta completa.
- 7. Desmontar el aparato y cortar transversalmente la muestra,compare el diametro del orificio,si este es mayor a dos veces que el de la aguja utilizada para abrirla se califica a este suelo como altamente Dispersivo -D1-.
- **8.** Si el efluente que sale de la cabeza de 50 mm es claramente obscuro y su caudal de salida no varia entre 1.0ml/s durante los 5 primeros minutos,adicione 5 minutos mas,si al final del efluente sigue saliendo oscuro detengase y determine el tamaño del agujero,si este supera enb 1.5 veces mas el diametro de la aguja se calsifica como Arcilla Dispersiva -D2-.
- 9. Si al terminar los 10 minutos y el efluente es ligeramente oscuroy su caudal es de 0.4 a 0.8ml/s aumente la cabeza hidraulica a 180mm de presion si el afluente es calramente obscuro y el caudal a aumentado 1.4 .2.7 ml/s,detengase y examine el tamalño del agujero.si este se encuentra entre 1.5 y 2 veces el diametro de la aguja clasifique el suelo como Arcilla Moderadamente Dispersiva ND4-.

- **10.** Si con la presion de 180mm el afluente sale claro o con algunas particulas y despues de 5 minutos continua con una caudal de 0.4 a .0.8ml/s eleve la presion a 380mm,si el afluente se a oscurecido y el caudal se ha aumentado entre 1.8 a 3.2ml/s detengase y clasifique el suelo como Ligeramente Dispersivo –ND-.
- 11. Si despues de 5 minutos y una presion hidraulica de 380mm y el efluente es completamente claro y el caudal es de 1.0 a 1.8 ml/s eleve la presion hidraulica a 1020, si despues de los 5 minutos el efluente es ligeramente oscuro y el caudal es mayor a 3.0ml/s clasifique el suelo como No Dispersivo –ND2-.
- **12.** Puede considerarse suelo No Dispersivo ND1 bajo presiones de 1020 mm generalmente tienen un caudal menor que 3.0ml/s y al examinar el agujero este no se ha alargado.

Durante el desarrollo del ensayo se deben de tomar los datos de caudales y tiempos en los cuales los flujos salen o han salido turbios mediante especulacion visual clasificar el suelo entere los parametros que encajan en el metodo A.

2.7.8 Ensayo de Doble Hidrómetro

Procedimiento:

- 1. Se toma 60 gr, de muestra que pasa el tamiz # 200, que deberá ser previamente secada en el horno, para luego ser mezclada con 150ml de agua.
- 2. Se traslada la muestra a la maquina batidora, en cuyo recipiente transferimos la muestra, teniendo cuidado de no perder el material durante el proceso, agregamos agua hasta que alcance 2/3 del recipiente.
- **3.** Transferimos el contenido del vaso de la batidora en un cilindro de sedimentación, en este caso en una probeta de 1000ml añadimos agua hasta completar los 1000ml.
- **4.** Se debe proveer de otra probeta con la misma cantidad de agua para colocar el hidrómetro y el termómetro.
- **5.** Introducir el agitador con la muestra y agitar la misma. Este proceso se repite hasta que las lecturas del hidrómetro permanezcan estables.
- **6.** Luego se procede a leer cada intervalo de tiempo establecido por las normas pero ya sin agitar las muestras.

2.7.9 Ensayo Metodológico

2.7.9.1 Método de Limite Liquido

Procedimiento:

1. Este método se lo emplea por medio de una formula general determinada por el Autor GIBBS Y BARA (1962), la cual es la siguiente:

$$\forall d = \frac{2.6 * Ll}{100}$$

Dónde:

¥d : Peso volumétrico seco

Ll: limite líquido

El cual su parámetro específica un resultado empírico relacionado con el peso volumétrico seco y su límite liquido de cada muestra obtenida en campo.

Llegando a su determinación que si los suelos tienen un valor mayor > 0.85 no son suelos colapsables.

CAP.ITULO III

3. ANALISIS DE LOS RESULTADOS OBTENIDOS EN CAMPO

3.1 ENSAYO DE HUMEDAD NATURAL

Tabla 3.22: Cálculos del porcentaje de humedad natural

MUESTRA N°			1		%
Lugar		Barrio 5 de agosto			
	Tara N°		7	14	
Ра	Tara + Suelo húmedo	gr.	59,00	81,70	
e g r	Tara + Suelo seco	gr.	58,20	80,60	
s o	Tara	gr.	6,50	6,70	
m	Agua	gr.	51,70	73,90	
e o	Suelo seco	gr.	0,80	1,10	
n s	Contenido de humedad	%	1,55	1,49	1,52

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Tabla #3.23: Cálculos del porcentaje de humedad natural

MUESTRA N° 9			9	%	
Lugar		Zona Santiago Arauz(frente adoquines)		/0	
	Tara N°		17	12	
Ра	Tara + Suelo húmedo	gr.	64,40	62,90	
e g r	Tara + Suelo seco	gr.	54,40	53,90	
s o	Tara	gr.	7,10	6,90	
o m	Agua	gr.	47,30	47,00	
e o	Suelo seco	gr.	10,00	9,00	
n s	Contenido de humedad	%	21,14	19,15	20,15

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Los resultados obtenidos (tabla #3.22) de humedad natural, nos muestran que en el lugar Barrio 5 de Agosto el suelo se encuentra con un porcentaje de humedad de 1,52%. En lo que respecta a la muestra 9 (tabla #3.23) se detalla un porcentaje de humedad de 20,15% lo que indica que el suelo está relativamente húmedo.

En cuanto a los resultados completos que se detallan en el anexo # 1 de los análisis de los suelos encontramos suelos semi-saturado y parcialmente saturado con una humedad promedio de 35%. Estos resultados nos ayudaran a analizar en la tabla de resumen (Anexo #4) el comportamiento de nuestros suelos.

3.2 ENSAYO DE GRANULOMETRIA

Tabla #3.24: Resultados de la granulométrica – Muestra 1

		GRANULO	METRÍA (ASTM D422)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%
	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ESPCFCD
		GRANUI	OMETRIA		
4"					
3"					
2 ½"					
2"					
1½"					
1"					
3/4"					
1/2"					
3/8"					
N°4					
PASA N°4				100,00	
TO TAL					
	_		-	SERIE FINA	
N°4	2,70		2,74	97,26	
8					
10	4,90		4,97	92,28	
16					
20					
30					
40	11,80		11,98	80,31	
50					
60					
100					
200	70,50		71,57	(8,74)	
PASA N°200	8,60		8,74		
TOTAL	98,50				

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley Tabla #:3.25 Resultados de la granulométrica – Muestra 9

		GRANULO	MEIRIA (A	ASTM D422)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%
	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ESPECIFICO
		GRANUI	LOMETRIA		
4"					
3"					
2 ½"					
2"					
11/2"					
1"					
3/4"					
1/2"					
3/8"					
N°4					
PASA N°4				100	
TO TAL		<u> </u>			
				S ERIE FINA	
N°4	0,3		0,36	99,64	
8					
10	1,40		1,68	97,96	
16					
20					
30		ļ			
40	15,40		18,50	79,46	
50					
60		ļ			
100					
200	5,50		6,61	(72,85)	
PASA N°200	60,63	1	72,85		

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

Con los resultados obtenidos del análisis granulométrico (tabla #3.24) se logró deducir que la muestra 1del Barrio 5 de Agosto corresponde a un suelo de grano fino, con grano grueso fino del grupo de las arenas, debido a que el 97,26% paso el tamiz # 4, el 70,50% fue retenido en el tamiz # 200 y más de la mitad de la muestra pasa por el tamiz # 200.

Por otra parte los datos que se obtuvieron en la muestra 9 del sector Santiago Arauz (tabla #3.25) muestran que tenemos un suelo de grano fino perteneciente a las arenas del material obtenido, que paso el tamiz # 4, el 99,64% fue retenido en el tamiz # 200 y solo el 5,50% paso el tamiz # 200.

Con todas las muestras recopiladas en el Anexo #4 se puede deducir que las partículas que conforman al suelo determinado de los diferentes sectores presentan diferente granulometría donde predomina el material fino (limo-arcilla) con cantidades no excluyentes de arena fina.

3.3 ENSAYO DE LIMITE LIQUIDO

Tabla 3.26: Cálculos del límite líquido - MUESTRA 4

	LII	WITE LIQUIDO	O (ASTM D43	18)	
N°	N°	PESO	PESO	PESO	%
TARA	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD
7	30	34,00	27,40	6,50	31,58
15	20	39,80	31,30	6,20	33,86
3	10	46,02	35,20	5,90	36,93

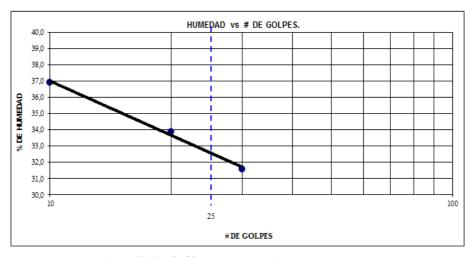


Figura #3.68: Gráfico de porcentaje de humedad Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

La tabla #3.26 nos muestra el porcentaje de humedad obtenido del número de golpe realizados con la cuchara casa grande, valores que nos permitirán, mediante una gráfica, interceptar los tres puntos realizados. Esta unión de puntos será interceptada por una línea que partirá desde los 25 golpes, el punto de encuentro servirá de referencia para trazar una recta y determinar cuáles el límite líquido del suelo. Se muestra en el límite líquido del suelo que es de32,50% lo que nos da a entender que nuestro suelo no puede exceder este porcentaje de humedad ya que pasaría a comportarse como un líquido. Cuando la muestra es sometida a la cuchara casa grande y cierra antes de los 25 golpes en su primera prueba se lo calificara como material no plástico NP.

Los resultados obtenidos del límite líquido de todas las muestras realizadas se muestran en el anexo 1.

3.4 ENSAYO DE LIMITE PLASTICO

Tabla #3.27: Cálculos del Límite Plástico

	LIMITE PL	ASTICO (AS	TM D4318)				
N°	PESO	PESO	PESO	%			
TARA	HUMEDO	SECO	TARRO	DE HUMEDAD			
T1	10,82	9,70	5,10	24,35			
T2	14,60	13,00	6,50	24,62			
		PRON	PROMEDIO				

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

En la tabla #3.27 con los valores de porcentaje de humedad que arrojaron los cálculos se realizó un promedio que nos dio un porcentaje de 24,48%, lo cual nos indica que hasta este porcentaje de humedad nuestro material se comportara como plástico, si reduce este porcentaje se comportara como un semisólido.

Obtenido los límites líquidos y plástico se obtiene por diferencia el índice de plasticidad el cual nos da un valor de 8,02 % que nos indica el rango dentro del cual nuestro suelo se comportara plásticamente.

Una vez obtenidos los valores de L.L. e I.P. utilizamos estos datos para graficarlos en la carta de plasticidad (figura #3.69). Graficado el punto en la carta nos va a indicar, si es

arcilla sobre la LINEA 'A' y si es limo de bajo de la LINEA 'A'. En este caso se ubicó debajo de la línea y con un límite líquido menor a 50 lo que nos indica que es un suelo ML: limo de baja plasticidad.

El grafico de plasticidad es el siguiente:

Figura #3.69: Gráfico de Carta de plasticidad Autores: VASQUEZ LESLIE – FAJARDO SHIRLEY

3.5 ENSAYO PESO ESPECIFICO

Tabla #3.28 Calculo de peso especifico

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	828
TOTAL	2,69

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

$$Ge = \frac{ws}{wfw + ws - wf}$$

Explicación:

En la tabla #3.28 se puede observar que el total del peso específico es de 2,69gr, el cual se determinó mediante la fórmula indicada.

3.6 ENSAYO PESO VOLUMETRICO

Tabla #3.29 Calculo de Peso Volumétrico

	GRAMOS
PESO DEL MATERIAL EN EL AIRE	1490,5
PESO DEL MATERIAL EN EL AIRE + PARAFINA	1786,5
PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	574,0
DENSIDAD DE PARAFINA	0,89

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

$$d = b - a = 296,00$$

$$e = \frac{d}{0,89} = 332,58$$

$$Pv = \frac{a}{b - c - e} = 1,694gr/cm3$$

Explicación:

En la tabla #3.29 se puede observar que el total del peso volumétrico (Pv) que es de 1,694 gr/cm3, el cual se determinó mediante la fórmula indicada.

3.7 ENSAYO DE CRUMB

Tabla# 3.30: Resultados del ensayo de Crumb

MUESTRAS	UBICACIÓN	TIPO DE SUELO	ENSAYO DE CRUMB
		sucs	GRADO
MUESTRA 1	BARRIO 5 DE AGOSTO	SP-SM	GRADO 1
MUESTRA 2	BARRIO 5 DE AGOSTO	SP-SM	GRADO 1
MUESTRA 3	BARRIO 5 DE AGOSTO	SP-SM	GRADO 1
MUESTRA 4	COMPLEJO TOHALLI	ML	GRADO 1
MUESTRA 5	AV. LA CULTURA AV. INTERBARRIOS (5 DE JUNIO)	SP-SM	GRADO 1
MUESTRA 6	GASOLINERA PRIMAX	SC	GRADO 1
MUESTRA 7	CONECTOR VIA CIRCUNVALACION	ML	GRADO 1
MUESTRA 8	RUTA SPONDYLUS LLEGADA SAN MATEO	МН	GRADO 2
MUESTRA 9	SANTIAGO ARAUZ	МН	GRADO 2
MUESTRA 10	SAN MATEO U.E.RIOBAMBA	SP-SM	GRADO 1
MUESTRA 11	AL LADO DEL PUENTE	ML	GRADO 2
MUESTRA 12	VIA ROCAFUERTE	ML	GRADO 1
MUESTRA 13	MUELLE JARAMIJO	ML	GRADO 2
MUESTRA 14	VIA REFINERIA CARRETERA 1	SM	GRADO 1
MUESTRA 15	VIA REFINERIA CARRETERA 2	SM	GRADO 1
MUESTRA 16	SITIO INDUMASTER	SM	GRADO 1

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

3.8 ENSAYO PINHOLE TEST

1

UBICACIÓN: MUESTRA:

PROFUNDIDAD:

Tabla #3.31: Resultado del ensayo de Pinhole Test

DETERMINACION DE DISPERSION DE SUELOS - METODO DE PINHOLE TEST (ASTM 4647-93)

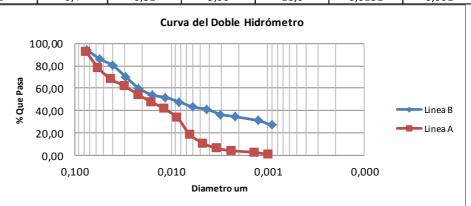
TABLA ASTM CARGA HIDRAULICA (H): 5,08 cm VOLUMEN (V): 98 ml TIEMPO (t): H= 2" (5,08cm) 600 seg CAUDAL(Q): 10 min 0,163 ml/seg CLASIFICACION Oscuro Algo Claro Algo Oscuro DESCRIPCION CLASIFICACION IDENTIFICACION $Q \ge$ 1,5≥Q 3,6 > Q≥ Claro 3,6ml/seg 1,5ml/seg >0,5ml/s eg Q≤0,5ml/seg Repetir Repetir ensayo con H: Df≥3 D1 3D1>Df>2 D1 2D1>Df>D1 $\mathsf{Df} \leq \mathsf{D1}$ Claro ensayo con Clasificacion Clasificacion 17,78cm Clasificacion H: 17,78cm D1 ND4 H= 7" (17,78cm) CARGA HIDRAULICA (H): 17.78 cm 10 min VOLUMEN (V): 200 ml TIEMPO (t): 600 seg CAUDAL(Q): 0,333 ml/seg Algo Claro Claro Q>1,0ml/seg Q≤1,0ml/seg Df> D1 **CLASIFICACION** Df ≤D1 Clasificacion DESCRIPCION CLASIFICACION IDENTIFICACION ND3 Repetir Repetir ensayo con H: Claro ensayo con 17,78cm H: 17,78cm H= 15" (38,10 cm) 10 min CARGA HIDRAULICA (H): 38,1 cm VOLUMEN (V): 413 ml Algo Claro Claro Q>1,7m1/seg Q≤1,7ml/seg TIEMPO (t): 600 seg Df>D1 Df ≤D1 CAUDAL(Q): 0,688 ml/seg Clasificacion Clasificacion ND2 **CLASIFICACION** DESCRIPCION CLASIFICACION IDENTIFICACION Dispersivos + Intermedio + No Dispersivos ND1 Claro NO DISPERSIVO ND1 ND3 ND2 ND4 D2 D1

Autores: Vásquez Naranjo Leslie - Fajardo Cobeña Shirley

3.9 ENSAYO DOBLE HIDROMETRO

Tabla# 3.32: Resultado del ensayo del Doble Hidrómetro

UBICACIÓN: Barrio 5 de Agosto


MUESTRA: 1
PROFUNDIDAD mts: 2

	DATOS	TECNICOS			
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,56	2,6	
AGENTE DISPERSANTE	con dispersante / sin dispersante	FACTOR DE CORRECIÓN (a)	1,01		
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	0	
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3	3	

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	48	46,65	94,23	51,00	8,4	0,0129	0,075
26	0,5	44	42,65	86,15	47,00	9,1	0,0129	0,055
26	1	41	39,65	80,09	44,00	9,6	0,0129	0,040
26	2	36	34,65	69,99	39,00	10,4	0,0129	0,029
26	4	31	29,65	59,89	34,00	11,2	0,0129	0,022
26	8	28	26,65	53,83	31,00	11,7	0,0129	0,016
26	15	27	25,65	51,81	30,00	11,9	0,0129	0,011
26	30	25	23,65	47,77	28,00	12,2	0,0129	0,008
25	60	23	21,4	43,23	26,00	12,5	0,0131	0,006
25	120	22	20,4	41,21	25,00	12,7	0,0131	0,004
24	240	20	18,15	36,66	23,00	13	0,0132	0,003
24	480	19	17,15	34,64	22,00	13,2	0,0132	0,002
25	1440	17	15,4	31,11	20,00	13,5	0,0131	0,001
25	2880	15	13,4	27.07	18.00	13.8	0.0131	0.001

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	47	45,65	92,21	50,00	8,6	0,0129	0,076
26	0,5	40	38,65	78,07	43,00	9,7	0,0129	0,057
26	1	35	33,65	67,97	38,00	10,6	0,0129	0,042
26	2	32	30,65	61,91	35,00	11,1	0,0129	0,030
26	4	28	26,65	53,83	31,00	11,2	0,0129	0,022
26	8	25	23,65	47,77	28,00	12,2	0,0129	0,016
26	15	22	20,65	41,71	25,00	12,7	0,0129	0,012
26	30	18	16,65	33,63	21,00	13,3	0,0129	0,009
25	60	11	9,4	18,99	14,00	14,5	0,0131	0,006
25	120	7	5,4	10,91	10,00	15,2	0,0131	0,005
24	240	5	3,15	6,36	8,00	15,5	0,0132	0,003
24	480	4	2,15	4,34	7,00	15,6	0,0132	0,002
25	1440	3	1,4	2,83	6,00	15,8	0,0131	0,001
25	2880	2	0,4	0,81	5,00	16,0	0,0131	0,001

 $\% = \frac{A \times 100}{B}$ $\% = \frac{11,01 \times 100}{40,56}$ $= 27,14 \approx 27,00$ **NO DISPERSIVO**

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

3.10 ENSAYO METODOLOGICO E IDENTIFICACION DE SUELOS COLAPSABLES

Metodo del Limite Liquido

FORMULA: $yd = \frac{2.6 * Ll}{100}$

Tabla# 3.33: Resultados del Método del Limite Liquido

MUESTRAS	UBICACIÓN	LIMITE LIQUIDO	TOTAL	RESULTADO
MUESTRA 1	DARRIO E DE ACOSTO	*		
MUESTRA 2	BARRIO 5 DE AGOSTO	*		
	BARRIO 5 DE AGOSTO	·		
MUESTRA 3	BARRIO 5 DE AGOSTO	*		
MUESTRA 4	COMPLEJO TOHALLI	32,50	0,85	Suelo estable
MUESTRA 5	AV. LA CULTURA AV. INTERBARRIOS (5 DE JUNIO)	32,99	0,86	No colapsable
MUESTRA 6	GASOLINERA PRIMAX	23,78	0,62	Colapsable
MUESTRA 7	CONECTOR VIA CIRCUNVALACION	36,43	0,95	Colapsable
MUESTRA 8	RUTA SPONDYLUS LLEGADA SAN MATEO	70,63	1,84	No colapsable
MUESTRA 9	SANTIAGO ARAUZ	61,90	1,61	No colapsable
MUESTRA 10	SAN MATEO U.E.RIOBAMBA	53,97	1,40	No colapsable
MUESTRA 11	AL LADO DEL PUENTE	40,03	1,04	No colapsable
MUESTRA 12	VIA ROCAFUERTE	47,20	1,23	No colapsable
MUESTRA 13	MUELLE JARAMIJO	27,03	0,70	Colapsable
MUESTRA 14	VIA REFINERIA CARRETERA 1	*		
MUESTRA 15	VIA REFINERIA CARRETERA 2	*		
MUESTRA 16	SITIO INDUMASTER	*		

Autores: Vásquez Naranjo Leslie – Fajardo Cobeña Shirley

Explicación:

El cual su parámetro específica un resultado empírico relacionado con el peso específico y su límite liquido de cada muestra obtenida en campo.

Llegando a su determinación que si los suelos tienen un valor (> 0,85) no son suelos colapsables.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Los trabajos geomecánicos obtenidos en la presente investigación son basadas a muestras tomadas en condiciones naturales de humedad y densidad, por lo que dicho parámetro pueden variar dependiendo de su estado saturación, consistencia, y compacidad de los suelos.

- El propósito principal de los ensayos presentados es la identificación real de los suelos dispersivos, que son la causa de fallas en presas de tierra y serias erosiones en otras estructuras de tierra.
- De los 16 ensayos físicos analizados, se comprueba que con frecuencia los resultados no concuerdan, y que el ensayo de Pinhole es el más fiable, por ser un ensayo cuantitativo y cualitativo; por lo tanto, es el ensayo físico que modela las condiciones de servicio y evalúa la dispersión.
- Los suelos dispersivos son altamente susceptibles a la tubificación por los procesos de erosión coloidal.
- De los ensayos físicos realizados, se observa que existe una buena correlación entre los ensayos de Pinhole y de Crumb.
- Un suelo con muchas sales hace al suelo dispersarse más fácilmente.

RECOMENDACIONES

- Es recomendable utilizar más de un ensayo para comprobar la dispersividad de un suelo. La opción más simple y económica sería emplear los ensayos de Crumb y de Pinhole Test.
- Se sugiere que los Ensayo de Pinhole se debería realizar en situaciones donde el agua estaría fluyendo (por ejemplo: en el caso de una presa) y el Ensayo de Emerson Crumb para las condiciones quietas, (por ejemplo en reservorios).
- Se recomienda utilizar en presencia de suelos colapsables materiales del mismo suelo extraído, compactado y eventualmente estabilizado granulométricamente:

arena compactada o suelo cemento compactado. La elección del tipo de material está condicionada generalmente por variables técnico económica. Los espesores de estos mantos son variables (1 a 4m) dependiendo del tipo de cargas y de las características del proyecto.

- Para las vías se propone que se utilice una mezcla de drenajes y sub-drenajes para pavimentos impermeables sobre suelos dispersivos.
- En presencia de suelos colapsables es recomendable reducir los vacíos, la permeabilidad y aumentar la capacidad de carga, utilizando fuerzas estáticas o dinámicas, a través de inyección de lechadas.

REFERENCIAS BIBLIOGRAFICAS

- AVILA, E. (25 de OCTUBRE de 2015). http://www.academia.edu/. Recuperado el 28 de NOVIEMBRE de 2015, de http://www.academia.edu/: http://www.academia.edu/17258085/Solucion_a_Suelos_Expansivos_Colapsables_y_ Dispersivos
- Bañon, L., & Bevía, J. F. (2001). *Manual de Carreteras* (Vol. I). Universidad de Alicante. Departamento de Ingeniería de la Construcción, Obras Públicas e Infraestructura Urbana: Ortiz e Hijos, Contratista de Obras, S.A.
- Carlos, C. (03 de 10 de 2009). http://es.slideshare.net. Recuperado el 25 de 11 de 2015, de http://es.slideshare.net/carlosjcamacho:
 http://es.slideshare.net/carlosjcamacho/criterios-para-calificar-los-suelos-con-fines-urbanos
- Comisión Nacional del Agua(Mexico). (diciembre de 2007). *Geotecnia en suelos Inestables*. Recuperado el 16 de julio de 2015, de Geotecnia en suelos Inestables: ftp://ftp.conagua.gob.mx/Mapas/libros%20pdf%202007/Geotecnia%20en%20Suelos% 20Inestables.pdf
- Dudley, 1., & Maswoswe, 1. (21 de 05 de 2013). www.estudiosgeotecnicos.info/index.php/suelos-expansivos-colapsables/
 http://www.estudiosgeotecnicos.info/index.php/suelos-expansivos-colapsables/
- Echarri, L. (09 de octubre de 1999). www.tecnun.es. Recuperado el 20 de enero de 2015, de suelo:

 http://www.tecnun.es/asignaturas/Ecologia/Hipertexto/05PrinEcos/110Suelo.htm#PO
 BLACION
- GARAY, H., & ALVA, J. (06 de 09 de 2010). http://www.cismid.uni.edu.pe. Recuperado el 20 de 01 de 2015, de IDENTIFICACION DE SUELOS DISPERSIVOS: http://www.cismid.uni.edu.pe/descargas/a_labgeo/labgeo18_p.pdf
- Hector, G., & Caribe, G. (07 de Noviembre de 2011). salonhogar.net. Recuperado el 02 de Enero de 2015, de El suelo: http://salonhogar.net/Salones/Ciencias/1-3/El_Suelo/El_suelo.htm
- M.E, S. (2013). ¿Que es el suelo y como se forma? Mexico.
- Martinez, C. (13 de Enero de 2002). *Edafologia: clasificacion de los suelos.* Recuperado el 28 de Enero de 2015, de platea.pntic.mec.es: http://platea.pntic.mec.es/~cmarti3/CTMA/SUELO/clasif1.htm

- Mesta, M. (26 de Octubre de 2012). *Suelos Expansivos*. Recuperado el 23 de febrero de 2015, de https://prezi.com: https://prezi.com/t0f13emxtrnm/suelos-expansivos/
- P.A.Ck, L. A. (04 de 08 de 2010). https://explorock.wordpress.com. Recuperado el 23 de 02 de 2015, de Clasificacion de los depositos sedimentarios: https://explorock.wordpress.com/2010/08/04/depositos-sedimentarios/
- Poliotti, M., & Sierra, P. (s.f.). *Consolidacion Unidimensional De Suelos*. Recuperado el 15 de noviembre de 2015, de geologiaygeotecnia/Consolidacion%20unidim%20de%20suelos_2011s2.pdf: http://www.fceia.unr.edu.ar/geologiaygeotecnia/Consolidacion%20unidim%20de%20suelos_2011s2.pdf
- R.Redolfi, D. (2007). http://www.docentes.unal.edu.co. Recuperado el 04 de 02 de 2015, de Características de suelos colapsables: http://www.docentes.unal.edu.co/aepazgon/docs/Suelos%20Colapsables.pdf
- Torrijo, J., & Franchi, J. (21 de Mayo de 2013). Suelos Metaestables: Suelos Expansivos y colapsables. Recuperado el 23 de Febrero de 2015, de http://www.estudiosgeotecnicos.info:
 http://www.estudiosgeotecnicos.info/index.php/suelos-expansivos-colapsables/
- Zamora, J., & Cristancho, F. (2008). La Humedad en las propiedades físicas del suelo. Bogotá: Universidad Nacional de Colombia.

N

E

X

S

ANEXO 1

			ENSA	YO HUMEDAD) NATURAL,	GRANULO	OMETRÍA Y	LÍMITES I	DE ATTERB	ERG			
ROYECTO:	TESIS												
BICACION:				MUESTRA :	1			MATERIAL:	SUELO NATUR	AL			
		GRANIII (ΜΕΤΡΊΔ (ASTM D422)	ENSA	AYOS DE CL	ASIFICACION	I	HUMEDAD	ΝΔΤΙΙΡΔΙ	(ASTM D	2216)	
					0/	1	No	A10				1	0,
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%		N°	N°	PESO	PESO	PESO	%	%
	PARCIAL	ACUMULADO CRANII	RETENIDO LOMETRIA	QUE PASA	ESPECIFICO	J	TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
4"		GKANU	LOHEIKIA			1	7		59,00	58,20	6,50	1,55	
3"						1	14		81,70	80,60	6,70	1,49	
2 ½"]				,	-,	.,	1,52
2"									LIMITE LIQUID	O(ASTM D4318)			
1½"													
1"											1		
3/4"						4							
1/2"						_					+		
3/8" N°4						-	ļ		LIMITE PLASTI	CO(ACTM D424	10)		
PASA N°4				100,00		-		I	LIMITE FLASTI	CO(ASTWI D431	T	1	
TOTAL			ı	100,00		-1					1		
	•	4		SERIE FINA									
N°4	2,70		2,74	97,26					•		•		
8													
10	4,90		4,97	92,28									
16	ļ					4							
20		-				4							
30 40	11,80	-	11,98	80,31		-							
50	11,80	 	11,98	80,51		1							
60	1					1							
100						1							
200	70,50		71,57	(8,74)]							
PASA N°200	8,60		8,74										
TOTAL	98,50					_							
				P inicial humedo= P inicial seco=	100 98,50	grms grms							
CI	ASIFICACIO	ON:	HUMEDAD NA		1,52	_							
	ASII ICACI		LIMITE LIQUIDO		NF								
SUCS		SP-SM	INDICE PLASTI	CO:	NF	•							
ASTHO		A4					J						

			ENSA	YO HUMEDAL) NATURAL,	NULOMETRIA	Y LIMITES I	DE ATTERB	ERG			
ROYECTO:	TESIS											
BICACION:				MUESTRA:	2		MATERIAL:	SUELO NATURA	AL			
					ENGA	E CLASIFICACIO	iNI					
		GRANULO	OMETRÍA (ASTM D422)	LNSA	E CLASIFICACIO	IN.	HUMEDAD	NATURAL	(ASTM D2	2216)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%	N°	N°	PESO	PESO	PESO	%	%
TAME	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ESPECIFICO	TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
	1	GRANU	LOMETRIA		·		1				1	
4"	1					5		74,80	73,70	6,80	1,64	
3" 2 ½"						10		72,30	71,40	6,90	1,40	1,52
2"							_L	LIMITE LIQUID	D(ASTM D4318)		I.	1,52
1½"								LIMITE EIGOID	<u> </u>			
1"												
3/4"												
1/2"												
3/8"	1	-										
N°4 PASA N°4				100,00				LIMITE PLASTI	CO(ASTM D431	3)		
TO TAL				100,00								
10 1.112				SERIE FINA								
N°4	19,00		19,29	80,71				•				•
8												
10	7,20		7,31	73,40								
16	1											
20	+	+										
30 40	20,80		21,12	52,29								
50	20,00		21,12	3242)								
60												
100												
200	46,00		46,70	(5,59)								
PASA N°200	5,50		5,59									
TOTAL	98,50											

			ENSA	YO HUMEDA	D NATURAL,	GRANULC	METRÍA Y	LÍMITES	E ATTERB	ERG			
ROYECTO:	TESIS												
BICACION:				MUESTRA :	3			MATERIAL:	SUELO NATURA	AL			
					FNSA	OS DE CLA	ASIFICACION	<u> </u>					
		GRANULO	OMETRÍA (ASTM D422)	LNOA	OS DE CEA	dii loacion		HUMEDAD	NATURAL	(ASTM D	2216)	
	P.RETENIDO	P. RETENIDO	%	%	%		N°	N°	PESO	PESO	PESO	%	%
TAMIZ	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ESPECIFICO		TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	
	FARCIAL		LOMETRIA	QUE PASA	ESPECIFICO		IAINO	GOLFEG	HOMEDO	52.00	IANNO	DE HOWEDAD	I NOMEDIO
4"							43		69,50	66,50	6,30	4,98	
3"							2		70,70	70,20	6,70	0,79	
2 1/2"													2,89
2"									LIMITE LIQUID	O(ASTM D4318)			
1½"													
1"													
3/4"									1		ļ		
1/2"	-								-				
3/8" N°4		+							LIMITE PLASTI	CO/ASTM D421	<u> </u>		
PASA N°4				100,00				l	LIMITE PLASTI	CO(ASTWID431	o) 	1	
TOTAL			ı	100,00	1								
10 1.12		4		SERIE FINA					1				
N°4	0,00		0,00	100,00		!		ı	u.	ı			
8	-,		-,	200,00									
10	0,40		0,41	99,59									
16													
20													
30													
40	2,60		2,68	96,91									
50													
60			1										
100	02.50		05.17	(1.51)	-								
200 DASA N9200	92,50	1	95,17	(1,74)									
			1,/4										
PASA N°200 TOTAL	1,70 97,20		1,74	(1,/17)									
				P inicial humedo= P inicial seco=		grms grms							
CL	ASIFICACI	ON:	HUMEDAD NA	ATURAL:	2,89								
			LIMITE LIQUID		NP								
SUCS		SP A4	INDICE PLAST	ICO:	NP								
ASTHO		A4			1								

	STATE STAT																
	TESIS																_
UBICACION:				MUESTRA:	4				MAT	ERIAL:	SUELO NATUR	AL					
		GRANULO	OMETRÍA (ASTM D422)	ENS	OS DE CL	ASIF	ICACIO	ON		HUMEDAD) NATURA	L(ASTM D2	216)			
	P.RETENIDO				%			N°		N°				T '		%	_
TAMIZ			PETENIDO	OUE DASA			١,	TARRO		SOLPES				DE HUMED	AD PR	ROMEI	חור
	TARCIAL			ACE I ASA	ESTECHICO		H			JULI EU	TOMEDO	0200	1711110	DE HOWLE		JIVILI	
4"								1			54,90	52,60	5,20	4,85			
3"								8			60,80	58,10		1			
2 ½"																5,0	6
2"											LIMITE LIQUID	O(ASTM D4318)				
1½"								7			34,00	27,40	6,50				
1"								15		20	39,80	31,30	6,20	33,86			
3/4"								3		10	46,02	35,20	5,90	36,93			
1/2"																	
3/8"													1.5				
N°4							_				î .						
PASA N°4				100,00									_	_	+		_
TO TAL		1		CEDIE EINA				12			14,60	13,00	6,50	24,62	+	24	40
N°4	1.2		1										I	1		24,4	0
8 8	1,2		1,20	96,74							HIIME	DAD vs. # DE	COLDES				
10	1.50		1.58	97.16				40,0					GOLFES.		\Box		\neg
16	1,50		1,50	57,10				39,0				i			\vdash	-	_
20								38,0								_	_
30								37,0				i			\sqcup	_	_
40	2,00		2,10	95,06			٥	36.0	<u> </u>						\sqcup		_
50							ΙÐ								\sqcup		
60	-						\frac{1}{2}										
100							씸										
200	,		39,61	(55,46)													
PASA N°200			55,46		ļ										\Box	\neg	\neg
TOTAL	95,19				I			31,0					 		\vdash	\dashv	=
						-						!					10
CL	ASIFICACI	ON:										# DE GO LPI	s				
SUCS AASTHO		ML A-4	INDICE PLAST			%											

			ENSA	YO HUMEDAI) NATURAL,	NULOMETRÍA	Y LÍMITES [DE ATTERB	ERG				
ROYECTO:	TESIS												
BICACION:				MUESTRA:	5		MATERIAL:	SUELO NATUR	AL				
					ENSA	DE CLASIFICACI	ON						
		GRANUL	OMETRÍA (ASTM D422)				HUMEDAD	NATURAL	(ASTM D	2216)		
	P.RETENIDO	P. RETENIDO	%	%	%	N°	N°	PESO	PESO	PESO	%		%
TAMIZ	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ESPECIFICO	TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAI		
			LOMETRIA					1				1	
4"						20		62,60	57,00	7,20	11,24		
3"						19		50,70	45,60	5,10	12,59		
2 ½"												11	1,92
2"							1	LIMITE LIQUID					
11/2"						18	30	41,50	33,40	8,10	32,02		
1"			1			19	20	29,70	23,50	5,20	33,88		
3/4"			-			OTG	10	33,00	26,20	7,00	35,42	-	
1/2" 3/8"			+										
N°4							<u> </u>	I IMITE PLAST	ICO(ASTM D431	8)	_L	1	
PASA N°4				100,00		1		18,15	15,40	6,70	31,61		
TOTAL			ı	100,00	I.	2		14,10	11,90	5,10	32,35		
		_		SERIE FINA								31	1,98
N°4	19,7		22,05	77,95									
8						40,0		HUME	EDAD vs # DE G	OLPES.			
10	25,10		28,09	49,86		40,0			!				
16			1						1				
20	+	 	+			38,0			!				
30 40	22,80		25,52	24,34					į l				
50	22,00		23,32	24,34		Q 36,0							\Box
60		ĺ	1			34,0 PE HUMEDAD %			!				
100						± 34,0		•					\Box
200	12,20		13,65	(10,69)		%							
PASA N°200	9,55		10,69			32,0		+	+ -				\vdash
TOTAL	89,35	1							!				
CI	.ASIFICACI	ON:	HUMEDAD NA		89,35 11,92	30,0			25 # DE GOLPES	<u> </u>			100
	ASII IOAOI		LIMITE LIQUID		32.99								
UCS ASTHO		SP- SM A-4	INDICE PLAST	TCO:	1.01								

			ENSA	YO HUMEDAD	NATURAL	., GRANULO	METRÍA Y	LÍMITES	DE ATTERB	ERG			
ROYECTO:	TESIS												
BICACION:				MUESTRA:	6			MATERIAL:	SUELO NATURA	AL.			
		GRANULO	METRÍA (ASTM D422)	ENS	AYOS DE CL	ASIFICACION		HUMEDAD	NATURAL	(ASTM D2	2216)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%		N°	N°	PESO	PESO	PESO	%	%
TAME	PARCIAL	A C UM ULA D O	RETENIDO	QUE PASA	ESPECIFICO		TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
	1		LOMETRIA			_							
4"						4	4		60,50	51,80	6,80	19,33	
3"	-					-	11		65,30	54,60	7,10	22,53	20.00
2 ½"									LIMITE LIQUIDO	7/ASTM D4219)			20,93
1½"	+						100	30	35,40	30,00	6,40	22,88	
1"							101	22	34,60	29,30	7,10	23,87	
3/4"							102	10	36,60	30,70	6,70	24,58	
1/2"													
3/8"													
N°4									LIMITE PLASTI		ri e		
PASA N°4				100,00			103		16,10	14,35	5,50	19,77	
TO TAL		1		SERIE FINA			104		16,90	15,12	5,30	18,13	18,95
N°4	9,9		11,97	88,03								1	10,33
8				,					HUME	DAD vs # DE G	OLPES.		
10	18,20		22,01	66,02			30,0			1			
16													
20							28,0			!			
30	10.20	<u> </u>	22.22	42.00						;			
40 50	19,20		23,22	42,80			26,0 HOW 24,0						
60							I GME			<u> </u>			
100							± 24,0 +						
200	13,40		16,20	(26,60)			%						
PASA N°200	21,99		26,60				22,0			1			
TOTAL	82,69												
				P inicial humedo= P inicial seco=	100 82,69	grms grms	20,0 10		 :	25			100
CI	ASIFICACI	ON:	HUMEDAD NA			93 %				# DE GO LPES			
	.ASIFICACI		LIMITE LIQUID		23,	78 %	1						
SUCS		sc	INDICE PLAST	TCO:	4,8	33							
ASTHO		A-4	<u> </u>										

			5110.4 1	VO 11111455 A		0044444	>=====================================	. (141750 5					
			ENSA	YO HUMEDAI) NATURAL	, GRANULC	DIVIETRIA Y	LIMITES	DE ATTERB	ERG			
ROYECTO: BICACION:	TESIS			MUESTRA :	7			MATERIAL:	SUELO NATURA	ı			
SICACION:				MUESTRA:	/			MATERIAL:	SUELU NATURA	\L			
		GRANIII (OMETRÍA (ASTM D422)	ENSA	AYOS DE CLA	ASIFICACION		HUMEDAD	ΝΔΤΙΙΡΔΙ	(ASTM D2	216)	
			%	%	9/	7	NIº	NIº	PESO	PESO	ĺ		%
TAMIZ	P.RETENIDO	P. RETENIDO			%		N° TABBO	N°			PESO	%	
	PARCIAL	ACUMULADO GRANU	RETENIDO LOMETRIA	QUE PASA	ESPECIFICO	_	TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
4"							6		47,00	44,70	5,10	5,81	
3"							15		54,80	49,30	6,10	12,73	
2 ½"													9,27
2"									LIMITE LIQUIDO		ı	1	1
1½"							11	30	35,90	28,50	7,10	34,58	
3/4"							<u>2</u> 6	20 10	40,00 33,70	30,70 25,10	6,70 5,00	38,75 42,79	
1/2"							ь	10	33,70	25,10	5,00	42,79	
3/8"													
N°4						1	•		LIMITE PLASTI	CO(ASTM D431	3)	•	•
PASA N°4				100,00			M200		12,30	11,00	6,90	31,71	
TO TAL		J					M201		12,50	11,00	6,50	33,33	
		1		SERIE FINA		ا ا							32,52
N°4 8	0,5		0,55	99,45		-			LUINAE	DAD vs # DE G	OI DES		
10	0,80		0,87	98,58			45,0		HOWE	DAD VS # DE G	OLFES.		
16			ĺ	ĺ			44,0			l l			
20							42,0			I			
30							41,0						
40	11,50		12,57	86,01		4	39,0						
50 60	+	+				1	39,0 38,0 37,0 36,0 35,0						
100		1				1	 36,0						
200	12,20		13,33	(72,68)			35,0 % 34,0						
PASA N°200	66,52		72,68				33,0			i			
TOTAL	91,52	<u> </u>					32,0 31,0						
				P inicial humedo=		grms	30,0		I	25			100
	A CIFIC A CI	ON:	HUMEDAD NA	P inicial seco= TURAL:	T	grms 7 %				# DE GO LPES			
CL	ASIFICACI	UN:	LIMITE LIQUIDO		36,4								
ucs		ML	INDICE PLASTI		3,9								

ENSAYO HUMEDAD NATURAL, GRANULOMETRÍA Y LÍMITES DE ATTERBERG PROYECTO: TESIS UBICACION: MUESTRA: 8 MATERIAL: SUELO NATURAL **ENSAYOS DE CLASIFICACION GRANULOMETRÍA (ASTM D422) HUMEDAD NATURAL(ASTM D2216)** % P.RETENIDO P. RETENIDO N° N° PESO PESO TAMIZ TARRO GOLPES HUMEDO SECO TARRO DE HUMEDAD PROMEDIO ACUMULADO RETENIDO QUE PASA GRANULOMETRIA 4" 52,70 47,30 5,80 13,01 74,90 67,60 8,10 12,27 18 3" ----12.64 2 1/2" 2" LIMITE LIQUIDO(ASTM D4318) 11/2" 24,10 14 7,20 1" 20 20 46,22 29,60 74,20 10 10 35,20 22,60 7,00 80,77 3/4" 1/2" 3/8" LIMITE PLASTICO(ASTM D4318) N°4 R1 8,76 8,20 7,00 46,67 PASA N°4 100,00 8,30 6,60 TOTAL R2 9,10 47,06 46,86 SERIE FINA 5,3 94,71 N°4 4,7 HUMEDAD vs # DE GOLPES. 3,50 3,94 90,76 10 16 20 30 40 9,30 10,48 80,29 76,0 75,0 74,0 73,0 72,0 71,0 70,0 60 100 70,0 69,0 5,40 6,08 (74,21) 200 PASA N°200 65,88 74,21 68,0 TOTAL 88.78 67.0 66.0 65.0 P inicial humedo= 100 grms 88,78 HUMEDAD NATURAL: 12,64 % # DE GO LPES **CLASIFICACION:**

70,63 %

23,77

LIMITE LIQUIDO:

A-7-5

INDICE PLASTICO:

SUCS

AASTHO

ENSAYO HUMEDAD NATURAL, GRANULOMETRÍA Y LÍMITES DE ATTERBERG PROYECTO: UBICACION: MUESTRA: 9 MATERIAL: SUELO NATURAL **ENSAYOS DE CLASIFICACION GRANULOMETRÍA (ASTM D422) HUMEDAD NATURAL(ASTM D2216)** % N° PESO PESO P.RETENIDO P. RETENIDO TAMIZ TARRO GOLPES HUMEDO SECO TARRO DE HUMEDAD PROMEDIO PARCIAL ACUMULADO RETENIDO QUE PASA ESPECIFICO GRANULOMETRIA 64,40 54,40 7,10 21,14 62,90 6,90 19,15 2 ½" 20,15 LIMITE LIQUIDO(ASTM D4318) 2" 58,86 11/2" 30 34,60 1" 43 21 38.62 26.00 6,50 64.72 10 36,50 24,00 6,90 73,10 3/4" 1/2" 3/8" N°4 LIMITE PLASTICO(ASTM D4318) PASA N°4 13,40 11,00 5,20 41,38 100 Α1 TOTAL A2 9,90 8,60 5,50 41,94 SERIE FINA 41,66 0,36 99,64 Nº4 HUMEDAD vs # DE GOLPES. 1.68 97.96 10 16 20 30 68,0 67,0 66,0 65,0 64,0 63,0 62,0 61,0 59,0 58,0 57,0 56,0 55,0 15.40 40 18.50 79.46 % DE HUMEDAD 50 60 100 (72,85) 200 5,50 6,61 PASA N°200 60,63 72,85 TOTAL 83,23

P inicial humedo=

HUMEDAD NATURAL:

LIMITE LIQUIDO:

МН

A-7-5

INDICE PLASTICO:

CLASIFICACION:

SUCS

AASTHO

P inicial seco=

100

83,23

grms

20,15 %

61,90 %

20,24

25

DE GO LPES

ENSAYO HUMEDAD NATURAL, GRANULOMETRÍA Y LÍMITES DE ATTERBERG

PROYECTO: TESIS

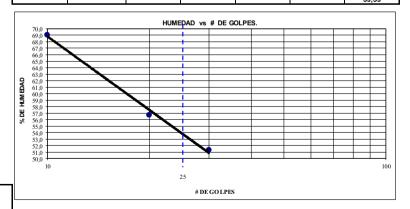
UBICACION: MUESTRA: 10 MATERIAL: SUELO NATURAL

ENSAYOS DE CLASIFICACION

GRANULOMETRÍA (ASTM D422)

TAMIZ	P.RETENIDO PARCIAL	P. RETENIDO ACUMULADO	% RETENIDO	% QUE PASA	% ESPECIFICO
	TARCIAL		OMETRIA	QUETASA	ESTECHEO
4"					
3"					
2 1/2"					
2"					
1½"					
1"					
3/4"					
1/2"					
3/8"					
N°4					
PASA N°4				100	
TOTAL					

			SERIE FINA	
N°4	18,10	19,82	80,18	
8				
10	30,00	32,85	47,33	
16				
20				
30				
40	30,20	33,07	14,26	
50				
60				
100				
200	7,10	7,77	(6,49)	
PASA N°200	5,92	6,49		
TOTAL	91.32			


		P inicial humedo= P inicial seco=	100 91,32	grms grms
CLASIFICACI	ON:	HUMEDAD NATURAL: LIMITE LIQUIDO:	9	,50 % 5,97 %
SUCS AASTHO	SP-SM A4	INDICE PLASTICO:	14	,58

HUMEDAD	NATURAL	(ASTM D2	216)	
PESO	PESO	PESO	%	

TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
С		43,10	40,30	7,00	8,41	
L		40,60	37,20	5,10	10,59	
						9,50
		LIMITE LIQUID	O(ASTM D4318)			
21	30	27.50	19.90	5.10	51.35	

		LIMIT L LIQUID	O(AOTHI DTOTO)			
21	30	27,50	19,90	5,10	51,35	
12	20	32,65	23,40	7,10	56,75	
16	10	32,60	22,10	6,90	69,08	

	LIMITE PLASTI	CO(ASTM D4318	3)		
R1	15,80	12,80	5,20	39,47	
R2	16,73	13,90	6,70	39,31	
					30 30

ENSAYO HUMEDAD NATURAL, GRANULOMETRÍA Y LÍMITES DE ATTERBERG PROYECTO: TESIS UBICACION: MUESTRA: MATERIAL: SUELO NATURAL **ENSAYOS DE CLASIFICACION GRANULOMETRÍA (ASTM D422) HUMEDAD NATURAL(ASTM D2216)** % P.RETENIDO P. RETENIDO N° PESO TAMIZ TARRO GOLPES HUMEDO SECO DE HUMEDAD PROMEDIO PARCIAL ACUMULADO RETENIDO QUE PASA ESPECIFICO TARRO GRANULOMETRIA 59,50 55,70 7,00 7,80 4" 2 ----62,00 57,90 6,60 7.99 2 ½" 7.90 2" LIMITE LIQUIDO(ASTM D4318) 43,80 6,30 39,93 11/2" 30 33,10 103 19 55,00 41,10 6,80 40,52 3/4" 30 10 50,50 35,50 6,50 51,72 3/8" LIMITE PLASTICO(ASTM D4318) N°4 PASA N°4 DT3 16,20 13,50 5,50 33,75 100,00 TO TAL 100 14.10 12.20 6.40 32.76 SERIE FINA 33,25 N°4 0,00 0,00 100,00 HUMEDAD vs # DE GOLPES. 10 0,01 0,01 99,99 30 0,60 0,65 99,34 40 % DE HUMEDAD 50 60 100 28,40 30,64 (68,70) 200 63,67 68,70 PASA N°200 TOTAL 92,68 P inicial humedo= 100 grms 25 P inicial seco= 92,68

7,90 %

40,03 %

6,78

DE GOLPES

HUMEDAD NATURAL:

LIMITE LIQUIDO:

A-5

INDICE PLASTICO:

CLASIFICACION:

SUCS

AASTHO

ENSAYO HUMEDAD NATURAL, GRANULOMETRÍA Y LÍMITES DE ATTERBERG PROYECTO: TESIS UBICACION: MUESTRA: 12 MATERIAL: SUELO NATURAL **ENSAYOS DE CLASIFICACION GRANULOMETRÍA (ASTM D422) HUMEDAD NATURAL(ASTM D2216)** % N° PESO PESO PESO P.RETENIDO TAMIZ HUMEDO DE HUMEDAD PROMEDIO PARCIAL ESPCFCD TARRO GOLPES SECO TARRO ACUMULADO RETENIDO QUE PASA GRANULOMETRIA 43,60 40,40 5,40 9,14 53,80 49,90 6,30 8,94 2 1/2" 9,04 LIMITE LIQUIDO(ASTM D4318) 46,10 11/2" 30 33,60 6,90 46,82 22 49,00 35,32 47,63 1" 2 6,60 7 10 63,60 45,20 7,10 48,29 3/4" 1/2" 3/8" LIMITE PLASTICO(ASTM D4318) N°4 PASA N°4 100,00 10,20 8,70 4,80 38,46 11,10 9,40 5,20 40,48 TO TAL SERIE FINA 39,47 0,22 99,78 N°4 0,20 8 HUMEDAD vs # DE GOLPES. 50.0 10 0,50 0,55 99,24 16 20 0,60 98,58 40 % DE HUMEDAD 60 100 (91,39) 6,60 7,20 200 PASA N°200 83,81 91,39 TOTAL 91,71 P inicial humedo= 100 P inicial seco= 91,71 HUMEDAD NATURAL: 9,04 % # DE GO LPES **CLASIFICACION:** LIMITE LIQUIDO: 47,20 % SUCS INDICE PLASTICO: ML 7,73

AASTHO

A-5

			ENSA	YO HUMEDAI	D NATURAL,	GRANULO	OMETRÍA Y	LÍMITES I	DE ATTERB	ERG			
ROYECTO:													-
BICACION:				MUESTRA :	13			MATERIAL:	SUELO NATURA	AL			
		CPANIII (ΜΕΤΡίΑ (ASTM D422)	ENSA	YOS DE CLA	ASIFICACION	I	HUMEDAD	NATUDAL	/ASTM D2	216\	
					I	1					ì	1 '	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%		N°	N°	PESO	PESO	PESO	%	% PPOMEDIO
	PARCIAL	ACUMULADO GRANU	RETENIDO LOMETRIA	QUE PASA	ESPECIFICO	ı	TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
4"		GICANO	LOMETRIA			1	7		49,60	47,70	7,10	4,68	
3"							9		53,10	50,50	6,40	5,90	
2 1/2"						1							5,29
2"									LIMITE LIQUID	O(ASTM D4318)			
1½"							6	30	23,70	20,20	6,70	25,93	
1"							4	22	21,70	18,10	5,40	28,35	
3/4"						1	5	10	29,00	23,90	6,30	28,98	
1/2"													
3/8"											<u> </u>		
N°4							_	1	LIMITE PLASTI	1	1		
PASA N°4				100,00	J.	J	F J		49,95 53,00	47,80	38,00	21,94	
TOTAL				SERIE FINA			J		53,00	49,30	32,70	22,29	22,11
N°4	2,50		2,63	97,37		1 '			<u> </u>	<u>I</u>	Į.	J.	22,11
8	2,50		2,03	91,31		1			HIME	DAD vs # DE G	OI PES		
10	1,00		1,05	96,31			35,0			V3 # DE C	J		$\neg \neg$
16	,			/-		1	34,0			!			
20							32,0						
30							31,0			!			+
40	2,40		2,53	93,79		1	₹ 30,0			I I			++
50			ļ		ļ	4	29,0		_ •				
60			ļ			4	30,0 29,0 28,0 27,0 26,0		-				
100	22		24	(50		1	8 26,0 26,0						\perp
200	23,30	 	24,53	(69,26)	 	1	25,0			i 			++-
PASA N°200 TOTAL	65,78 94,98		69,26		1	1	24,0						++
1 01 AL	94,98	<u>I</u>	l		<u> </u>	1	23,0						
				P inicial humedo= P inicial seco=		grms grms	22,0 10		:	25			1
CL/	ASIFICACIO	ON:	HUMEDAD NA	TURAL:	5,29 27,03	%				# DE GOLPE	s		
JCS ASTHO		ML A-4	INDICE PLAST	ICO:	4,92								

			ENSA	YO HUMEDA	D NATURAL,	RANULO	METRÍA Y	LÍMITES D	E ATTERB	ERG			
ROYECTO:	TESIS												
BICACION:				MUESTRA:	14			MATERIAL:	SUELO NATUR	AL .			
					ENSA	S DE CLA	SIFICACION						
		GRANULO	OMETRÍA (ASTM D422)	2.107	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011 107101011		HUMEDAD	NATURAL	(ASTM D2	2216)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%		N°	N°	PESO	PESO	PESO	%	%
	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ESPECIFICO		TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
		GRANU	LOMETRIA										
4"	1				1		10		62,00	60,00	7,00	3,77	
3"			-		-	F	11		81,80	78,80	6,60	4,16	2.00
2 ½"						L			LIMITE LIQUID	7/ASTM D//318\			3,96
11/2"									LIMITE LIQUID	J(A31W D4318)			
1"						F							
3/4"													
1/2"													
3/8"													
N°4						_			LIMITE PLASTI	CO(ASTM D431	8)		
PASA N°4				100,00									
TO TAL		1		CEDIE EDIA									
N°4	4,00		4,16	SERIE FINA 95,84		L							
N°4 8	4,00		4,16	95,84									
10	2,00		2,08	93,76									
16	2,00		2,00	25,70									
20													
30													
40	2,20		2,29	91,47									
50	<u> </u>												
60	ļ												
100		 											
200	63,30		65,81	(25,67)	-								
PASA N°200 TOTAL	24,69 96,19	 	25,67		+								
TOTAL	90,19	<u> </u>	I.										
				P inicial humedo		16 16							
CI	ASIFICACI	ON-	HUMEDAD NA		3,96								
	ASIFICACI	OIV.	LIMITE LIQUID		NP								
UCS ASTHO		SM	INDICE PLAST	TCO:	NP	J							

PROYECTO:			ENSA	YO HUMEDAI	O NATURAL, (ANULOMETRÍA Y	LIMITES D	E ATTERB	ERG			
	TESIS											
BICACION:				MUESTRA:	15		MATERIAL:	SUELO NATURA	AL			
		GRANUL	OMETRÍA (ASTM D422)	ENSAY	DE CLASIFICACION		HUMEDAD	NATURAL	(ASTM D2	216)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%	N°	N°	PESO	PESO	PESO	%	%
	PARCIAL	ACUMULADO		QUE PASA	ESPECIFICO	TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
	1	GRANU	LOMETRIA									
4"						14		55,70	51,90	7,00	8,46	
3" 2 ½"						15		54,80	51,00	6,80	8,60	8,53
2"								LIMITE LIQUIDO	D(ASTM D4318)		1	0,55
11/2"								EIWITE EIGOID	3(A31W D4310)			1
1"												
3/4"												
1/2"												
3/8"												
N°4								LIMITE PLASTI	CO(ASTM D4318	3)	F	
PASA N°4 TOTAL				100,00	<u> </u>						+	
IO IAL	1	J		SERIE FINA								
N°4	13,3		14,43	85,57		<u></u>			<u> </u>			
8	ĺ			ĺ								
10	6,50		7,05	78,51								
16												
20 30					 							
40	34,00		36,90	41,61								
50	54,00		50,70	.1,01								
60												
100												
200	25,50		27,68	(13,94)								
PASA N°200	12,84		13,94									
TOTAL	92,14]]							
TOTAL	92,14			P inicial humedo=	,							
	ASIFICACI	ON:	HUMEDAD NA		8,53							
CL.	ASIFICACI	UN:	LIMITE LIQUID		NP							
SUCS AASTHO		SM	INDICE PLAST	ICO:	NP							

			ENSA	YO HUMEDAI	D NATURAL, G	RANULO	METRÍA Y	LÍMITES D	E ATTERB	ERG			
	TESIS												
BICACION:				MUESTRA:	16			MATERIAL:	SUELO NATURA	AL			
					ENSAYO	S DE CLA	SIFICACION	I					
		GRANULO	OMETRÍA (ASTM D422)		_			HUMEDAD	NATURAL	(ASTM D2	2216)	
TAMIZ	P.RETENIDO	P. RETENIDO	%	%	%	ſ	N°	N°	PESO	PESO	PESO	%	%
.AME	PARCIAL	ACUMULADO	RETENIDO	QUE PASA	ES P EC IF ICO		TARRO	GOLPES	HUMEDO	SECO	TARRO	DE HUMEDAD	PROMEDIO
		GRANU	LOMETRIA			Ţ							
4"							18		66,50	65,00	6,50	2,56	
3" 2 ½"		-	.				16		74,80	72,80	6,70	3,03	2,79
2"						L			LIMITE LIQUIDO) (ΔSTM D4318)	l.		2,19
1½"						ſ			LIMITE EIGOID	5(A31W D4310)			
1"						İ							
3/4"													
1/2"													
3/8"						Ĺ			1				
N°4				100.00		Ī		I	LIMITE PLASTI	CO(ASTM D431	8) I	1	1
PASA N°4 TOTAL			I	100,00		•					1		
IOTAL		1		SERIE FINA		ŀ							
N°4	8,90		9,15	90,85				•	•			•	
8													
10	2,00		2,06	88,80									
16	 	-											
30	1				 								
40	11,70		12,03	76,77									
50	11,70		12,00	,,,,,									
60													
100	ļ												
200	56,10		57,67	(19,10)									
PASA N°200	18,58 97,28	1	19,10										

			CA	RACTERIS	STICAS [DEL SUELO		
MUESTRA #	% DE GRAVA	% DE ARENA	% DE FINOS	LL	IP	DESCRIPCION	sucs	
1	2,74	88,52	8,74		NP	ARENA LIMOSA	SP-SM	
1	2,74	88,32	8,74	_	INF	POBREMENTE GRADADA	3F -3IVI	
2	19,29	75,12	5,59		NP	ARENA LIMO GRAVOSA	SP-SM	
2	19,29	75,12	3,39	-	INP	POBREMENTE GRADADA	38-3101	
3	0,00	98,26	1,74	-	NP	ARENA MAL GRADUADA	SP	
						MEZCLA DE LIMO Y ARENA		
4	1,26	43,28	55,46	32,5	8,02	MEDIANA PLASTICIDAD	ML	
						BAJA COMPRESIBILIDAD		
_						ARENA LIMO GRAVOSA MAL GRADADA		
5	22,05	67,26	10,69	32,99	1,01	BAJA PLASTICIDAD	SP-SM	
						ARENA ARCILLOSA CON GRAVA		
6	11,97	61,43	26,6	23,78	4,83	BAJA PLASTICIDAD	SC	
						LIMO ARENOSO		
7	0,55	26,77	72,68	36,43	3,91	BAJA PLASTICIDAD	ML	
	,,,,,				-,	BAJA COMPRESIBILIDAD		
						LIMO ARENOSO		
8	5,3	20,49	74,21	70,63	23,77	ALTA PLASTICIDAD	МН	
Ü	3,3	20,43	7 4,21	70,03	23,77	ALTA COMPRENSIBILIDAD	141	
						LIMO ARENOSO		
9	0,36	26,79	72,85	61,9	20,24	ALTA PLASTICIDAD	МН	
9	0,50	20,79	72,63	01,9	20,24		IVIII	
						ALTA COMPRENSIBILIDAD		
10	19,82	73,69	6,49	53,97	14,58	ARENA CON MEZCLA DE GRAVA Y LIMO	SP-SM	
						POCO DE FINOS		
4.4	0.00	24.2	60.7	40.00	6.70	LIMO ARENOSO	D 41	
11	0,00	31,3	68,7	40,03	6,78	MEDIA PLASTICIDAD	ML	
						BAJA COMPRESIBILIDAD		
						LIMO ARENOSO		
12	0,22	8,39	91,39	47,2	7,73	MEDIA PLASTICIDAD	ML	
						BAJA COMPRESIBILIDAD		
						LIMO ARENOSO		
13	2,63	28,11	69,26	27,03	4,92	BAJA PLASTICIDAD	ML	
						BAJA COMPRESIBILIDAD		
14	4,16	70,17	25,67	-	NP	ARENAS LIMOSA, CON POCA CANTIDAD DE GRAVA, NP	SM	
15	14,43	71,63	13,94	-	NP	ARENAS LIMOSA, CON POCA CANTIDAD DE GRAVA, NP	SM	
16	9,15	71,75	19,1	-	NP	ARENAS LIMOSA, CON POCA CANTIDAD DE GRAVA, NP	SM	

ANEXO 2

UNIVERSIDAD LAICA ELOY ALFARO DE MANABI CARRERA DE INGENIERIA CIVIL

PROYECTO: TESIS

MATERIAL: SUB-RASANTE

LOCALIZACION - SITIO: BARRIO 5 DE AGOSTO

MUESTRA: 1

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	828
PESO ESPECIFICO (Ge) gr/cm³	2,69

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: BARRIO 5 DE AGOSTO

MUESTRA: 2

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	822,5
PESO ESPECIFICO (Ge) gr/cm³	2,56

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: BARRIO 5 DE AGOSTO

MUESTRA: 3

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	829,7
PESO ESPECIFICO (Ge) gr/cm³	2,73

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: COMPLEJO TOHALLI

MUESTRA: 4

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	796,9
PESO ESPECIFICO (Ge) gr/cm³	2,10

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: AV. LA CULTURA AV. INTERBARRIOS (5 DE JUNIO)

MUESTRA: 5

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	804,6
PESO ESPECIFICO (Ge) gr/cm³	2,22

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: GASOLINERA PRIMAX

MUESTRA: 6

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	813,4
PESO ESPECIFICO (Ge) gr/cm³	2,38

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: CONECTOR VIA CIRCUNVALACION (ATRÁS MANTA 2000)

MUESTRA:

7

ENSAYO:

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	824,9
PESO ESPECIFICO (Ge) gr/cm³	2,62

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: RUTA SPONDYLUS LLEGADA SAN MATEO

MUESTRA:

8

ENSAYO:

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	821
PESO ESPECIFICO (Ge) gr/cm³	2,53

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: ZONA SANTIAGO ARAUZ (FRENTE ADOQUINES)

MUESTRA:

9

ENSAYO:

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	821,5
PESO ESPECIFICO (Ge) gr/cm³	2,54

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: SAN MATEO UNIDAD EDUCATIVA RIOBAMBA

MUESTRA:

10

ENSAYO:

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	817,6
PESO ESPECIFICO (Ge) gr/cm³	2,46

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: AL LADO DEL PUENTE

MUESTRA:

11

ENSAYO:

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	808,4
PESO ESPECIFICO (Ge) gr/cm³	2,29

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: VIA ROCAFUERTE

MUESTRA:

12

ENSAYO:

PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	800,1
PESO ESPECIFICO (Ge) gr/cm³	2,15

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: MUELLE JARAMIJO

MUESTRA: 13

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	795,5
PESO ESPECIFICO (Ge) gr/cm³	2,08

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: VIA REFINERIA NUEVA CARRETERA 1

MUESTRA: 14

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	818,7
PESO ESPECIFICO (Ge) gr/cm³	2,48

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: VIA REFINERIA NUEVA CARRETERA 2

MUESTRA: 15

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	806,8
PESO ESPECIFICO (Ge) gr/cm³	2,26

$$Ge = \frac{ws}{wfw + ws - wf}$$

LOCALIZACION - SITIO: ZONA INDUMASTER

MUESTRA: 16

ENSAYO: PESO ESPECIFICO

	GRAMOS
MATERIAL (ws)	300
PESO PROBETA	148,2
PESO PROBETA + AGUA (wfw)	639,6
PESO PROBETA + AGUA + MATERIAL (wf)	820,4
PESO ESPECIFICO (Ge) gr/cm³	2,52

$$Ge = \frac{ws}{wfw + ws - wf}$$

UNIVERSIDAD LAICA ELOY ALFARO DE MANABI CARRERA DE INGENIERIA CIVIL

PROYECTO: TESIS

MATERIAL: SUB-RASANTE

LOCALIZACION - SITIO: BARRIO 5 DE AGOSTO

MUESTRA: 1

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	1490,5
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	1786,5
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	574,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 296 $Pu = \frac{a}{b - c - e}$ 1,694 gr/cm³ $e = \frac{d}{0,89}$ 332,58

LOCALIZACION - SITIO: BARRIO 5 DE AGOSTO

MUESTRA: 2

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	841,1
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	991,2
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	381,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 150,1 $e = \frac{d}{0,89}$ 168,65

$$Pu = \frac{a}{b - c - e}$$
 1,905 gr/cm³

LOCALIZACION - SITIO: BARRIO 5 DE AGOSTO

MUESTRA: 3

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	1963,5
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	2217
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	820,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$

$$e = \frac{d}{0,89}$$

$$Pu = \frac{a}{b - c - e}$$
 1,765 gr/cm³

LOCALIZACION - SITIO: COMPLEJO TOHALLI

MUESTRA:

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	523,6
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	676,2
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	105,2
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 152,6
 $e = \frac{d}{0,89}$ 171,46

$$Pu = \frac{a}{b - c - e}$$

1,311 gr/cm³

LOCALIZACION - S AV. LA CULTURA AV. INTERBARRIOS (5 DE JUNIO)

MUESTRA:

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	624,6
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	708,7
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	107,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
$$e = \frac{d}{0.89}$$

$$Pu = \frac{a}{b - c - e}$$
 1,231

gr/cm³

LOCALIZACION - SI GASOLINERA PRIMAX

MUESTRA:

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	659,7
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	747,3
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	123,6
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
$$e = \frac{d}{0.89}$$

$$Pu = \frac{a}{b - c - e}$$
 1,256

gr/cm³

LOCALIZACION - SITIO: CONECTOR VIA CIRCUNVALACION (ATRÁS MANTA 2000)

MUESTRA:

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	528,8
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	646,6
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	155,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 117,8
 $e = \frac{d}{0.89}$ 132,36

$$Pu = \frac{a}{b - c - e}$$

1,472 gr/cm³

LOCALIZACION - SITIO: RUTA SPONDYLUS LLEGADA SAN MATEO

MUESTRA:

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	843,5
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	968,7
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	264,1
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
$$e = \frac{d}{0.89}$$

$$Pu = \frac{a}{b - c - e}$$

1,496

gr/cm³

LOCALIZACION ZONA SANTIAGO ARAUZ (FRENTE ADOQUINES)

MUESTRA:

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	1374,1
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	1551,9
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	595,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
$$e = \frac{d}{0,89}$$

$$Pu = \frac{a}{b - c - e}$$
 1,815 gr/cm³

LOCALIZACION - SITIO: SAN MATEO UNIDAD EDUCATIVA RIOBAMBA

MUESTRA: 10

ENSAYO: PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	2653,4
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	3012,0
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	1040,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 358,6 $Pu = \frac{a}{b - c - e}$ 1,691 gr/cm³

LOCALIZACION: AL LADO DEL PUENTE

MUESTRA: 11

ENSAYO: PESO VOLUMETRICO

		GRAMOS
a	PESO DEL MATERIAL EN EL AIRE	776,17
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	924,32
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	263,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 148,15 $Pu = \frac{a}{b - c - e}$ 1,568 gr/cm³ $e = \frac{d}{0,89}$

LOCALIZACION: VIA ROCAFUERTE

MUESTRA: 12

ENSAYO: PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	529,24
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	629,1
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	160,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 99,86 $Pu = \frac{a}{b - c - e}$ 1,483 gr/cm³ $e = \frac{d}{0,89}$

LOCALIZACION - SITIO: MUELLE JARAMIJO

MUESTRA: 13

ENSAYO: PESO VOLUMETRICO

		GRAMOS
a	PESO DEL MATERIAL EN EL AIRE	2027,9
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	2302,2
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	730,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 274,3 $Pu = \frac{a}{b - c - e}$ 1,604 gr/cm³

LOCALIZACION: VIA REFINERIA NUEVA CARRETERA 1

MUESTRA: 14

ENSAYO: PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	624,68
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	814,13
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	150,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 189,45 $Pu = \frac{a}{b - c - e}$ 1,384 gr/cm³ $e = \frac{d}{0,89}$ 212,87

LOCALIZACION - SI VIA REFINERIA NUEVA CARRETERA 2

MUESTRA:

15

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	516,7
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	563,9
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	203,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
$$e = \frac{d}{0,89}$$

$$Pu = \frac{a}{b - c - e}$$
 1,678 gr/cm³

LOCALIZACION - SITIO: ZONA INDUMASTER

MUESTRA:

16

ENSAYO:

PESO VOLUMETRICO

		GRAMOS
а	PESO DEL MATERIAL EN EL AIRE	1256,8
b	PESO DEL MATERIAL EN EL AIRE + PARAFINA	1369,2
С	PESO DEL MATERIAL EN EL AIRE + PARAFINA + AGUA	605,0
	DENSIDAD DE PARAFINA	0,89

$$d = b - a$$
 112,4
 $e = \frac{d}{0,89}$ 126,29

$$Pu = \frac{a}{b - c - e}$$

1,970 gr/cm³

ANEXO 3

DETERMINACION DE DISPERSION DE SUELOS - METODO DE PINHOLE TEST (ASTM 4647-93)

UBICACIÓN:

MUESTRA:

MUESTRA: 1
PROFUNDIDAD: 5 mts

1°				
	CARGA HIDRAULICA (H):		cm	TABLA ASTM
	VOLUMEN (V):		ml	
TIEMP		98 600	seg	H= 2" (5,08cm)
CAUDA		0,163	ml/seg	10 min
CLASIFIC	ACION			Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Algo Oscuro Algo Claro Q≥ 3,6 > Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	3,6ml/seg Df≥3D1 Clasificacion D1 1,5ml/seg 3D1>Df>2D1 Clasificacion D2 2,5ml/seg 2D1>Df>D1 Clasificacion ND4 Q≤0,5ml/seg Df ≤ D1 Clasificacion ND4
2°	ALILICA (LI).	47.70		H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUMI		200 600	ml	
CAUDA		0,333	seg ml/seg	
CAODA	ιτ(α).	0,333	IIII/ SEg	Algo Claro Claro Q>1,0ml/seg
CLASIFIC	ACION			Df>D1 Q≤1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Clasificación DT SD1
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUMI	EN (V):	413	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg Df>D1 Df < D1
CAUDA	CAUDAL(Q):		ml/seg	Df>D1 Df≤D1 Clasificacion Clasificacion
CLASIFIC	ACION			ND2 ND1
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 2
PROFUNDIDAD: 2 mts

1°				TABLA ASTM
CARGA HIDR	CARGA HIDRAULICA (H):		cm	IADLAASTIVI
VOLUM	EN (V):	120	ml	
TIEMP	O (t):	600	seg	H= 2" (5,08cm)
CAUDA	L(Q):	0,200	ml/seg	10 min
CLASIFIC	ACION			Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Q≥ 3,6 > Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ensayo con H: 17,78cm		3,6ml/seg Df≥3D1 Clasificacion D1 1,5ml/seg 2D1>Df>D1 Clasificacion D2 2,5ml/seg 2D1>Df>D1 Clasificacion ND4 Q≤0,5ml/seg Df ≤ D1 Clasificacion ND4
2°				H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM		190	ml	
TIEMP		600	seg	
CAUDA	L(Q):	0,317	ml/seg	Algo Claro Claro
1				Q>1,0ml/seg
CLASIFIC	1	IDENTIFICACION		Clasificacion Df ≤ D1
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM		250	ml	Algo Claro Claro
TIEMP		600	seg	Q>1,7ml/seg Q≤1,7ml/seg
	CAUDAL(Q):		ml/seg	Df>D1 Df ≤D1 Clasificacion
	CAUDAL(Q): 0,417 ml/seg			ND2 ND1
CLASIFICACION				
DESCRIPCION	DESCRIPCION CLASIFICACION IDENTIFICACION		CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1
I				

UBICACIÓN:

MUESTRA: 3
PROFUNDIDAD: 4 mts

1°				TABLA ASTM
	CARGA HIDRAULICA (H):		cm	
VOLUM	EN (V):	105	ml	
TIEMP	O (t):	600	seg	H= 2" (5,08cm)
CAUDA	،L(Q):	0,175	ml/seg	10 min
CLASIFIC	ACION			Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Algo Oscuro Algo Claro Q ≥ 3,6 > Q ≥ 1,5 ≥ Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ensayo con H: 17,78cm		3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
2°	A			H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM		195	ml	
TIEMP		600	seg	
CAUDA	ıL(Q):	0,325	ml/seg	Algo Claro
CLASIFIC	ACION			Q>1,0m1/seg Df>D1 Q≤1,0m1/seg
DESCRIPCION	CLASIFICACION	IDENTIFICACION		Clasificadon DT S D1
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM	EN (V):	410	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDA	CAUDAL(Q):		ml/seg	Df>D1 Df ≤D1 Clasificadon
CLASIFICACION			ND2 ND1	
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 4
PROFUNDIDAD: 2 mts

1°				
CARGA HIDR	AULICA (H)·	5,08	cm	TABLA ASTM
VOLUMEN (V):		120	ml	
TIEMP	. ,	600	seg	H= 2" (5,08cm)
CAUDA		0,200	ml/seg	10 min
	•	<u>, </u>		
CLASIFIC	CACION			Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Algo Oscuro Algo Claro Q≥ 3,6>Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2°				H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM		205	ml	
TIEMP		600	seg	
CAUDA	AL(Q):	0,342	ml/seg	Algo Claro Claro
CLASIFIC	CACION			Q>1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Clasificacion Df ≤ D1
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	ayo con H:	ND3
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM	EN (V):	415	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg Df>D1 Df ≤D1
CAUDAL(Q):		0,692	ml/seg	Clasification Clasification
CLASIFICACION				ND2 ND1
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 5

PROFUNDIDAD: 5 mts

1°	A L II L C A (L I)	5,08		TABLA ASTM
	CARGA HIDRAULICA (H): VOLUMEN (V):		cm	
		135	ml	J. 211 (5.00 ····)
TIEMP		600	seg	H= 2" (5,08cm) 10 min
CAUDA	AL(Q):	0,225	ml/seg	10 111111
CLASIFIC	CACION			Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Algo Oscuro Algo Claro Q ≥ 3,6 > Q ≥ 1,5 ≥ Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
2°				H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM		223	ml	
TIEMP		600	seg	
CAUDA	AL(Q):	0,372	ml/seg	Algo Claro Claro
CLASIFIC	CACION			Q>1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	
28				H= 15" (38,10 cm) 10 min
3° CARGA HIDR	VIIIICV (P).	20.4		
		38,1	cm	Algo Claro
VOLUM	. ,	502 600	ml	Algo Claro Claro Q>1,7ml/seg Q≤1,7ml/seg
-	TIEMPO (t):		seg	Df>D1 Df ≤D1
CAUDAL(Q): 0,837 ml/seg			iiii/seg	Clasificadon ND2 Clasificadon ND1
CLASIFICACION		01010::		
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D1 D2 ND4 ND3 ND2 ND1
I				

UBICACIÓN:

MUESTRA: 6
PROFUNDIDAD: 5 mts

1°		,		TABLA ASTM
CARGA HIDR		5,08	cm	
VOLUM		157	ml	
TIEMP	O (t):	600	seg	H= 2" (5,08cm)
CAUDA	AL(Q):	0,262	ml/seg	10 min
CLASIFIC				
CLASIFIC			0101011	Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Q≥ 3,6 > Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	3,6ml/seg
2°				H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM		245	ml	
TIEMP	O (t):	600	seg	
CAUDA	AL(Q):	0,408	ml/seg	Algo Claro
CLASIFIC	CACION			Q>1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	,	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM		524	ml	Algo Claro Claro
TIEMP		600	seg	Q>1,7ml/seg Q≤1,7ml/seg
-	CAUDAL(Q):			Df>D1 Df ≤D1 Clasificacion Clasificacion
	CAUDAL(Q): 0,873 ml/seg			ND2 Clasification ND1
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP		+ Dispersivos + Intermedio + No Dispersivos + No Dispersi

UBICACIÓN:

MUESTRA: 7
PROFUNDIDAD: 5 mts

1°				TABLA ASTM
CARGA HIDR		5,08	cm	
VOLUM		180	ml	
TIEMP		600	seg	H= 2" (5,08cm)
CAUDA	۱L(Q):	0,300	ml/seg	10 min
CLASIFIC	CACION			
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Q ≥ Algo Oscuro 3.6 > O > 1.5 ≥ O Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
2°		, , , , , , , , , , , , , , , , , , , ,		H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM		267	ml	
TIEMP		600	seg	
CAUDA	۱L(Q):	0,445	ml/seg	Algo Claro
CLASIFIC	CACION			$\begin{array}{c ccc} & & & & & & & & & \\ & Q>1,0ml/seg & & & & & & \\ & Df>D1 & & & & & \\ & Df>D1 & & & & & \\ & Clasification & & & Df \leq D1 & \\ & & & & & & & \\ \end{array}$
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	,	
				H= 15" (38,10 cm) 10 min
3°	**********			
CARGA HIDR		38,1	cm	
VOLUM		546	ml	Algo Claro Claro Q>1,7ml/seg Q≤1,7ml/seg
TIEMP		600 0,910	seg	Df>D1
CAUDA	CAUDAL(Q):		ml/seg	Clasificacion Clasificacion ND2 ND1
CLASIFIC	CACION			
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	T
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 8
PROFUNDIDAD: 5 mts

1°				TABLA ASTM
CARGA HIDR	AULICA (H):	5,08	cm	
VOLUM	EN (V):	202	ml	
TIEMP		600	seg	H= 2" (5,08cm)
CAUDA	AL(Q):	0,337	ml/seg	10 min
CLASIFIC	CACION			Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	Q≥ 3,6 > Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens 17,7	•	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
2°				H= 7" (17,78cm)
CARGA HIDR		17,78	cm	10 min
VOLUM	· ,	289	ml	
TIEMP		600	seg	
CAUDA	AL(Q):	0,482	ml/seg	Algo Claro Claro
				Q>1,0ml/seg
CLASIFIC	1			Clasificacion Df ≤ D1
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens 17,7	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM		568	ml	Algo Claro Claro
TIEMP		600	seg	Q>1,7ml/seg Q≤1,7ml/seg
	CAUDAL(Q):		ml/seg	Df>D1 Df ≤D1 Clasificacion
CLASIFICACION				ND2 ND1
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 9

PROFUNDIDAD: 5 mts

1°		,		TABLA ASTM
CARGA HIDR		5,08	cm	
VOLUM		91	ml	28/5 22
TIEMP		600	seg	H= 2" (5,08cm)
CAUDA	AL(Q):	0,152	ml/seg	10 min
CLASIFIC	CACION			Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Algo Oscuro Algo Claro Q > 3,6 > Q > 1,5 \ Q Claro Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ensayo con H: 17,78cm		3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
2°				H= 7" (17,78cm)
CARGA HIDR	AULICA (H):	17,78	cm	10 min
VOLUM	EN (V):	185	ml	
TIEMP	O (t):	600	seg	
CAUDA	AL(Q):	0,308	ml/seg	Algo Claro
CLASIFIC	CACION			Q>1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM		400	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDAL(Q):		0,667	ml/seg	Df>D1 Df ≤D1 Clasificadon Clasificadon
CLASIFICACION				ND2 ND1
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 10
PROFUNDIDAD: 5 mts

1°				TABLA ASTM
CARGA HIDR	CARGA HIDRAULICA (H): 5,08		cm	
VOLUMI	VOLUMEN (V):		ml	
TIEMP	O (t):	600	seg	H= 2" (5,08cm)
CAUDA	،L(Q):	0,207	ml/seg	10 min
CLASIFIC	ACION			Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Algo Oscuro Algo Claro Q ≥ 3,6 > Q ≥ 1,5 ≥ Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
2° CARGA HIDR	۸۱۱۱۲۸ (۲۱)۰	17 70	am.	H= 7" (17,78cm)
VOLUMI		17,78	cm	10 min
TIEMP		208	ml	
CAUDA		600	seg	
CAUDA	πι(α).	0,347	ml/seg	Algo Claro Claro Q>1,0ml/seg Q≤1,0ml/seg Q≤1,0ml/
CLASIFIC	ACION			Df>D1 QSI,0111/35eg Df ≤D1
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDRA	AULICA (H):	38,1	cm	
VOLUMI		236	ml	Algo Claro Claro
TIEMP	. ,	600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDA		0,393	ml/seg	Df>D1 Df ≤D1 Clasificacion Clasificacion
	5.15571E(Q). 0,555 IIII/3Eg			Clasificadon Clasificadon ND2 ND1
CLASIFIC	ACION			
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 11
PROFUNDIDAD: 5 mts

1°				TABLA ASTM
CARGA HIDR	CARGA HIDRAULICA (H):		cm	
VOLUM	VOLUMEN (V):		ml	
TIEMP	O (t):	600	seg	H= 2" (5,08cm)
CAUDA	L(Q):	0,217	ml/seg	10 min
CLASIFIC	CACION			Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	Oscuro Algo Oscuro Algo Claro Q ≥ 3,6 > Q ≥ 1,5 ≥ Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ensayo con H: 17,78cm		3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
2° CARGA HIDR.	AUIICA (H):	17,78	cm	H= 7" (17,78cm)
VOLUM		215	ml	10 min
		600		
	TIEMPO (t):		seg	
CAUDA	CAUDAL(Q): 0,358 ml/seg			Algo Claro Claro Q>1,0ml/seg Claro
CLASIEIC	CION			Df>D1 Q≤1,0ml/seg
CLASIFICACION DESCRIPCION CLASIFICACION		IDENTIFICACION		Clasificacion Df ≤ D1
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	ayo con H:	ND3
3°	l	1		H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM	EN (V):	308	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDA		0,513	•	Df>D1 Df ≤D1 Clasificadon
CLASIFIC	CACION			ND2 ND1
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 12
PROFUNDIDAD: 5 mts

1°				TABLA ASTM		
CARGA HIDR	CARGA HIDRAULICA (H):		cm			
VOLUMI	EN (V):	94	ml			
TIEMP		600	seg	H= 2" (5,08cm)		
CAUDA	۱L(Q):	0,157	ml/seg	10 min		
CLASIFIC	ACION			Oscuro Algo Claro		
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	Oscuro $Q \ge $ $Algo Oscuro $ $Algo Claro $		
Claro	Repetir ensayo con H: 17,78cm	Repetir ens 17,7	-	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
2° CARGA HIDR	ΔΙΙΙΙ C Δ (Η)·	17,78	cm	H= 7" (17,78cm)		
VOLUMI		182	ml	10 min		
		600	seg			
	TIEMPO (t): CAUDAL(Q):		•			
		0,303	IIII/3Eg	Algo Claro		
CLASIFIC				Clasificacion Df ≤D1		
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	ND3		
Claro	Repetir ensayo con H: 17,78cm	Repetir ens 17,7	-			
3°				H= 15" (38,10 cm) 10 min		
CARGA HIDR	AULICA (H):	38,1	cm			
VOLUMI	EN (V):	353	ml	Algo Claro Claro		
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg		
CAUDA		0,588		Df>D1 Df ≤D1 Clasificadon Clasificadon		
	(4 1/2-22 7/2-28			ND2 ND1		
CLASIFICACION						
DESCRIPCION			CACION			
Claro	ND1	NO DISP	ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1		

UBICACIÓN:

MUESTRA: 13
PROFUNDIDAD: 5 mts

<u>1°</u>				TABLA ASTM
CARGA HIDR		5,08	cm	
VOLUM		111	ml	
TIEMP		600	seg	H= 2" (5,08cm)
CAUDA	AL(Q):	0,185	ml/seg	10 min
CLASIEIC	CLASIFICACION			
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Oscuro Algo Oscuro Algo Claro
DESCRIPCION		IDENTIFI	CACION	Q≥ 3,6>Q≥ 1,5≥Q Claro 3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2°				H= 7" (17,78cm)
CARGA HIDRAULICA (H):		17,78 228	cm	10 min
	VOLUMEN (V):		ml	
` ,		600	seg	
CAUDA	CAUDAL(Q): 0,3		ml/seg	Algo Claro
CLASIFIC	CACION			Q>1,0m1/seg Df>D1 Q≤1,0m1/seg
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	Clasificadon DT S D1 ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens		
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM		409	ml	Algo Claro Claro
TIEMP		600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDA		0,682	ml/seg	Df>D1 Df ≤D1 Clasificadon
CLASIFICACION		, 0	ND2 ND1	
DESCRIPCION CLASIFICACION IDENTIFICACION			CACION	
Claro				+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 14

PROFUNDIDAD: 5 mts

1°				
CARGA HIDR	ΔΙΙΙΓΔ (Η).	5,08	cm	TABLA ASTM
VOLUM		3,08	ml	
TIEMP	. ,	600	seg	H= 2" (5,08cm)
CAUDA		0,143		10 min
			, 0	
CLASIFIC	CLASIFICACION			Oscuro Algo Oscuro Algo Claro
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Algo Oscuro Algo Claro Q≥ 3,6>Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm	Repetir ens		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
2°				H= 7" (17,78cm)
CARGA HIDR	CARGA HIDRAULICA (H):		cm	10 min
VOLUM		209	ml	
TIEMP	TIEMPO (t):		seg	
CAUDAL(Q):		0,348	ml/seg	Algo Claro Claro
CLASIFIC	CACION			Q>1,0ml/seg Df>D1 Q≤1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	Clasification DT ≤D1 ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM	EN (V):	276	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDA	AL(Q):	0,460	ml/seg	Df>D1 Df ≤D1 Clasificadon
CLASIFICACION				ND2 ND1
DESCRIPCION CLASIFICACION IDENTIFICACION			CACION	
Claro	ND1	NO DISP		+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

MUESTRA: 15
PROFUNDIDAD: 5 mts

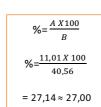
1°		1		TABLA ASTM
CARGA HIDR		5,08	cm	
VOLUM		300	ml	
TIEMP		600	seg	H= 2" (5,08cm)
CAUDA	AL(Q):	0,500	ml/seg	10 min
CLASIEIC	CLASIFICACION			
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	Oscuro Algo Oscuro Algo Claro
DESCRIPCION		IDENTIF	CACION	Q≥ 3,6>Q≥ 1,5≥Q Claro 3,6ml/seg 1,5ml/seg >0,5ml/seg O<0,5ml/seg
Claro	Repetir ensayo con H: 17,78cm	Repetir ens 17,7	•	3,6ml/seg
2°				H= 7" (17,78cm)
CARGA HIDR	CARGA HIDRAULICA (H):		cm	10 min
VOLUM	EN (V):	420	ml	10 111111
TIEMP	TIEMPO (t): 600		seg	
CAUDA	CAUDAL(Q): 0		ml/seg	Algo Claro
CLASIFIC		ı	_	Q>1,0ml/seg
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens 17,7	•	
3°		1		H= 15" (38,10 cm) 10 min
CARGA HIDR	ΔΙΙΙΓΑ (Η)·	38,1	cm	
VOLUM		802	ml	Algo Claro Claro
TIEMP		600	seg	Q>1,7ml/seg Q≤1,7ml/seg
		1,337	ml/seg	Df>D1 Df ≤D1
CAODA	CAUDAL(Q): 1,337 ml/seg		iiii/seg	Clasificadon Clasificadon ND2 ND1
CLASIFICACION				
DESCRIPCION	CLASIFICACION	IDENTIF	CACION	
Claro				+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

UBICACIÓN:

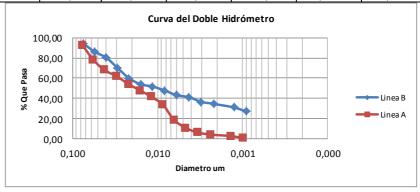
MUESTRA: 16
PROFUNDIDAD: 5 mts

1°				TABLA ASTM
CARGA HIDR	AULICA (H):	5,08	cm	INDE (ASTIVI
VOLUM	EN (V):	250	ml	
TIEMP	O (t):	600	seg	H= 2" (5,08cm)
CAUDA	۱L(Q):	0,417	ml/seg	10 min
CLASIFIC	CACION			Oscuro Algo Claro
DESCRIPCION	DESCRIPCION CLASIFICACION			Oscuro Algo Oscuro Algo Claro Q≥ 3,6>Q≥ 1,5≥Q Claro
Claro	Repetir ensayo con H: 17,78cm		-	3,6ml/seg 1,5ml/seg >0,5ml/seg Q≤0,5ml/seg
2°		17,78		H= 7" (17,78cm)
-	CARGA HIDRAULICA (H):		cm	10 min
	VOLUMEN (V):		ml	
	TIEMPO (t): 600		seg	
CAUDA	CAUDAL(Q): 0,645 ml/seg			Algo Claro Claro
	CLASIFICACION			Q>1,0ml/seg Df>D1 Clasificacion
DESCRIPCION	CLASIFICACION	IDENTIFI	CACION	ND3
Claro	Repetir ensayo con H: 17,78cm	Repetir ens	-	
3°				H= 15" (38,10 cm) 10 min
CARGA HIDR	AULICA (H):	38,1	cm	
VOLUM	EN (V):	715	ml	Algo Claro Claro
TIEMP	O (t):	600	seg	Q>1,7ml/seg Q≤1,7ml/seg
CAUDA	L(Q):	1,192	ml/seg	Df>D1
CLASIFICACION				NDI
DESCRIPCION CLASIFICACION IDENTIFICACION			CACION	
Claro ND1 NO DISPERSIVO			ERSIVO	+ Dispersivos + Intermedio + No Dispersivos + ND1 D2 ND4 ND3 ND2 ND1

ENSAYO DEL DOBLE HIDRÓMETRO


UBICACIÓN: Barrio 5 de Agosto

MUESTRA: 1
PROFUNDIDAD mts: 2


	DATOS TECNICOS								
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,56	2,6					
AGENTE DISPERSANTE	con dispersante / sin dispersante	FACTOR DE CORRECIÓN (a)	1,01						
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	0					
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3	3					

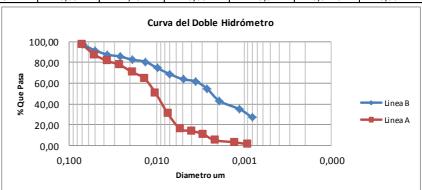
TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	А	D (mm)
26	0,25	48	46,65	94,23	51,00	8,4	0,0129	0,075
26	0,5	44	42,65	86,15	47,00	9,1	0,0129	0,055
26	1	41	39,65	80,09	44,00	9,6	0,0129	0,040
26	2	36	34,65	69,99	39,00	10,4	0,0129	0,029
26	4	31	29,65	59,89	34,00	11,2	0,0129	0,022
26	8	28	26,65	53,83	31,00	11,7	0,0129	0,016
26	15	27	25,65	51,81	30,00	11,9	0,0129	0,011
26	30	25	23,65	47,77	28,00	12,2	0,0129	0,008
25	60	23	21,4	43,23	26,00	12,5	0,0131	0,006
25	120	22	20,4	41,21	25,00	12,7	0,0131	0,004
24	240	20	18,15	36,66	23,00	13	0,0132	0,003
24	480	19	17,15	34,64	22,00	13,2	0,0132	0,002
25	1440	17	15,4	31,11	20,00	13,5	0,0131	0,001
25	2880	15	13,4	27,07	18,00	13,8	0,0131	0,001

TEMPERATU RA°C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	А	D (mm)
26	0,25	47	45,65	92,21	50,00	8,6	0,0129	0,076
26	0,5	40	38,65	78,07	43,00	9,7	0,0129	0,057
26	1	35	33,65	67,97	38,00	10,6	0,0129	0,042
26	2	32	30,65	61,91	35,00	11,1	0,0129	0,030
26	4	28	26,65	53,83	31,00	11,2	0,0129	0,022
26	8	25	23,65	47,77	28,00	12,2	0,0129	0,016
26	15	22	20,65	41,71	25,00	12,7	0,0129	0,012
26	30	18	16,65	33,63	21,00	13,3	0,0129	0,009
25	60	11	9,4	18,99	14,00	14,5	0,0131	0,006
25	120	7	5,4	10,91	10,00	15,2	0,0131	0,005
24	240	5	3,15	6,36	8,00	15,5	0,0132	0,003
24	480	4	2,15	4,34	7,00	15,6	0,0132	0,002
25	1440	3	1,4	2,83	6,00	15,8	0,0131	0,001
25	2880	2	0,4	0,81	5,00	16,0	0,0131	0,001

NO DISPERSIVO

UBICACIÓN: BARRIO 5 DE AGOSTO

MUESTRA: 2
PROFUNDIDAD mts: 2

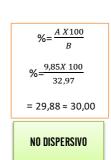

DATOS TECNICOS								
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,73	2,7				
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	DE CORRECIÓN (a) 0,99					
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	0				
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	4	4				

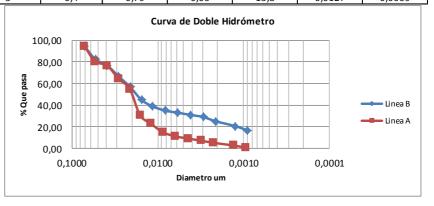
TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
28	0,25	51	49,15	97,32	54,00	7,9	0,0123	0,069
28	0,5	48	46,15	91,38	51,00	8,4	0,0123	0,050
28	1	46	44,15	87,42	49,00	8,6	0,0123	0,036
28	2	45	43,15	85,44	48,00	8,8	0,0123	0,026
26	4	44	41,65	82,47	47,00	8,9	0,0125	0,019
26	8	43	40,65	80,49	46,00	9,1	0,0125	0,013
26	15	40	37,65	74,55	43,00	9,2	0,0125	0,010
26	30	37	34,65	68,61	40,00	9,4	0,0125	0,007
28	60	34	32,15	63,66	37,00	9,7	0,0123	0,005
28	120	33	31,15	61,68	36,00	10,1	0,0123	0,004
26	240	30	27,65	54,75	33,00	10,7	0,0125	0,003
26	480	24	21,65	42,87	27,00	11,1	0,0125	0,002
26	1440	20	17,65	34,95	23,00	11,5	0,0125	0,001
26	2880	16	13,65	27,03	19,00	11,9	0,0125	0,001

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
28	0,25	51	49,15	97,32	54,00	8,3	0,0123	0,071
28	0,5	46	44,15	87,42	49,00	8,6	0,0123	0,051
28	1	43	41,15	81,48	46,00	8,9	0,0123	0,037
28	2	41	39,15	77,52	44,00	9,1	0,0123	0,026
26	4	38	35,65	70,59	41,00	9,2	0,0125	0,019
26	8	35	32,65	64,65	38,00	9,7	0,0125	0,014
26	15	28	25,65	50,79	31,00	10,1	0,0125	0,010
26	30	18	15,65	30,99	21,00	10,6	0,0125	0,007
28	60	10	8,15	16,14	13,00	11,4	0,0123	0,005
28	120	9	7,15	14,16	12,00	12,5	0,0123	0,004
26	240	8	5,65	11,19	11,00	13,3	0,0125	0,003
26	480	5	2,65	5,25	8,00	14,3	0,0125	0,002
26	1440	4	1,65	3,27	7,00	15	0,0125	0,001
26	2880	3	0,65	1,29	6,00	15,5	0,0125	0,001

 $\% = \frac{A \times 100}{B}$ $\% = \frac{17,00 \times 100}{62,01}$ $= 27,42 \approx 27,00$

NO DISPERSIVO

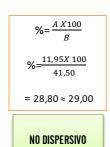

UBICACIÓN: BARRIO 5 DE AGOSTO

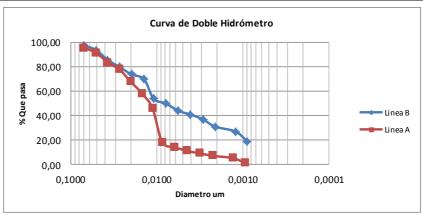

MUESTRA: 3
PROFUNDIDAD mts: 2

DATOS TECNICOS								
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,69	2,7				
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	0,99					
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	60				
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	4	4				

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	50	47,65	94,35	53,00	8,1	0,0125	0,0712
26	0,5	44	41,65	82,47	47,00	9,1	0,0125	0,0533
26	1	41	38,65	76,53	44,00	9,6	0,0125	0,0387
26	2	36	33,65	66,63	39,00	10,4	0,0125	0,0285
26	4	31	28,65	56,73	34,00	11,2	0,0125	0,0209
26	8	25	22,65	44,85	28,00	12,2	0,0125	0,0154
26	15	22	19,65	38,91	25,00	12,7	0,0125	0,0115
26	30	20	17,65	34,95	23,00	12,9	0,0125	0,0082
26	60	19	16,65	32,97	22,00	13	0,0125	0,0058
26	120	18	15,65	30,99	21,00	13,2	0,0125	0,0041
26	240	17	14,65	29,01	20,00	13,3	0,0125	0,0029
26	480	15	12,65	25,05	18,00	13,5	0,0125	0,0021
25	1440	13	10,4	20,59	16,00	13,8	0,0127	0,0012
25	2880	11	8,4	16,63	14,00	14,5	0,0127	0,0009

TEMPERATU RA°C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	50	47,65	94,35	53,00	8,1	0,0125	0,0712
26	0,5	43	40,65	80,49	46,00	9,2	0,0125	0,0536
26	1	41	38,65	76,53	44,00	9,6	0,0125	0,0387
26	2	35	32,65	64,65	38,00	10,6	0,0125	0,0288
26	4	30	27,65	54,75	33,00	11,4	0,0125	0,0211
26	8	18	15,65	30,99	21,00	13,3	0,0125	0,0161
26	15	14	11,65	23,07	17,00	14	0,0125	0,0121
26	30	10	7,65	15,15	13,00	14,7	0,0125	0,0088
26	60	8	5,65	11,19	11,00	15	0,0125	0,0063
26	120	7	4,65	9,21	10,00	15,2	0,0125	0,0044
26	240	6	3,65	7,23	9,00	15,3	0,0125	0,0032
26	480	5	2,65	5,25	8,00	15,5	0,0125	0,0022
25	1440	4	1,4	2,77	7,00	15,6	0,0127	0,0013
25	2880	3	0,4	0.79	6.00	15.8	0.0127	0.0009

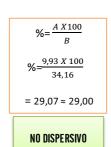

UBICACIÓN: COMPLEJO TOHALLI

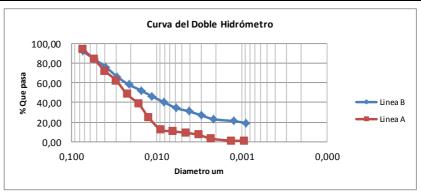

MUESTRA: 4
PROFUNDIDAD mts: 3

DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,69	2,7					
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	0,99						
PASANTE # 200	100,00%	PESO DEL SUELO (Ws)	50						
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3	3					

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
28	0,25	50	49,15	97,32	53,00	8,1	0,0123	0,0700
28	0,5	48	47,15	93,36	51,00	8,4	0,0123	0,0504
28	1	44	43,15	85,44	47,00	9,1	0,0123	0,0371
28	2	41	40,15	79,50	44,00	9,6	0,0123	0,0269
28	4	38	37,15	73,56	41,00	10,1	0,0123	0,0195
28	8	36	35,15	69,60	39,00	10,4	0,0123	0,0140
28	15	28	27,15	53,76	31,00	11,7	0,0123	0,0109
28	30	26	25,15	49,80	29,00	12,0	0,0123	0,0078
28	60	23	22,15	43,86	26,00	12,5	0,0123	0,0056
26	120	22	20,65	40,89	25,00	12,7	0,0125	0,0041
26	240	20	18,65	36,93	23,00	13,0	0,0125	0,0029
26	480	17	15,65	30,99	20,00	13,5	0,0125	0,0021
26	1440	15	13,65	27,03	18,00	13,8	0,0125	0,0012
26	2880	11	9,65	19,11	14,00	14,5	0,0125	0,0009

TEMPERATU	TIEMPO	LECTURA DEL	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
RA °C		HIDROMETRO	•			, ,		` ,
28	0,25	49	48,15	95,34	52,00	8,3	0,0123	0,0709
28	0,5	47	46,15	91,38	50,00	8,6	0,0123	0,0510
28	1	43	42,15	83,46	46,00	9,2	0,0123	0,0373
28	2	40	39,15	77,52	43,00	9,7	0,0123	0,0271
28	4	35	34,15	67,62	38,00	10,6	0,0123	0,0200
28	8	30	29,15	57,72	33,00	11,4	0,0123	0,0147
28	15	24	23,15	45,84	27,00	12,4	0,0123	0,0112
28	30	10	9,15	18,12	13,00	14,7	0,0123	0,0086
28	60	8	7,15	14,16	11,00	15	0,0123	0,0062
26	120	7	5,65	11,19	10,00	15,2	0,0125	0,0044
26	240	6	4,65	9,21	9,00	15,3	0,0125	0,0032
26	480	5	3,65	7,23	8,00	15,5	0,0125	0,00225
26	1440	4	2,65	5,25	7,00	15,6	0,0125	0,00130
26	2880	2	0,65	1,29	5,00	16	0,0125	0,00093

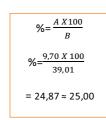

UBICACIÓN: AV. LA CULTURA-AV. INTERBARRIOS


MUESTRA: 5
PROFUNDIDAD mts: 2

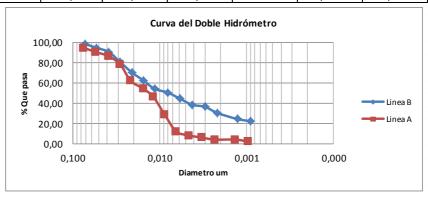
DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,69	2,7					
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	0,99						
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	0					
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	4	1					

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
25	0,25	49	46,4	91,87	52,00	8,3	0,0127	0,073
25	0,5	45	42,4	83,95	48,00	8,9	0,0127	0,054
25	1	41	38,4	76,03	44,00	9,6	0,0127	0,039
25	2	36	33,4	66,13	39,00	10,4	0,0127	0,029
25	4	32	29,4	58,21	35,00	11,1	0,0127	0,021
25	8	29	26,4	52,27	32,00	11,5	0,0127	0,015
25	15	26	23,4	46,33	29,00	12,0	0,0127	0,011
25	30	23	20,4	40,39	26,00	12,5	0,0127	0,008
25	60	20	17,4	34,45	23,00	13,0	0,0127	0,006
26	120	18	15,65	30,99	21,00	13,3	0,0125	0,004
26	240	16	13,65	27,03	19,00	13,7	0,0125	0,003
26	480	14	11,65	23,07	17,00	14,0	0,0125	0,002
26	1440	13	10,65	21,09	16,00	14,2	0,0125	0,001
26	2880	12	9,65	19,11	15,00	14,3	0,0125	0,001

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
25	0,25	49	47,4	93,85	52,00	8,3	0,0127	0,073
25	0,5	44	42,4	83,95	47,00	9,1	0,0127	0,054
25	1	38	36,4	72,07	41,00	10,1	0,0127	0,040
25	2	33	31,4	62,17	36,00	10,9	0,0127	0,030
25	4	26	24,4	48,31	29,00	12,1	0,0127	0,022
25	8	21	19,4	38,41	24,00	12,9	0,0127	0,016
25	15	14	12,4	24,55	17,00	14,0	0,0127	0,012
25	30	8	6,4	12,67	11,00	15	0,0127	0,009
25	60	7	5,4	10,69	10,00	15,2	0,0127	0,006
26	120	6	4,65	9,21	9,00	15,3	0,0125	0,004
26	240	5	3,65	7,23	8,00	15,5	0,0125	0,003
26	480	3	1,65	3,27	6,00	15,8	0,0125	0,002
26	1440	2	0,65	1,29	5,00	16	0,0125	0,001
26	2880	2	0,65	1,29	5,00	16	0,0125	0,001


UBICACIÓN: GASOLINERA PRIMAX

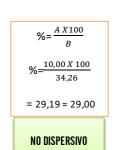
MUESTRA: 6
PROFUNDIDAD mts: 2

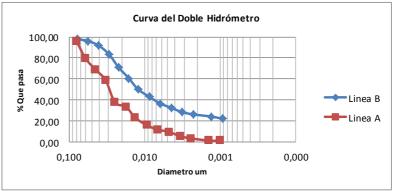

DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,62	2,6					
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	1,01						
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	0					
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3	3					

TEMPERATU RA°C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	50	48,65	98,27	53,00	7,9	0,0129	0,073
26	0,5	48	46,65	94,23	51,00	8,4	0,0129	0,053
26	1	46	44,65	90,19	49,00	8,8	0,0129	0,038
26	2	41	39,65	80,09	44,00	9,6	0,0129	0,028
26	4	36	34,65	69,99	39,00	10,4	0,0129	0,021
26	8	32	30,65	61,91	35,00	11,1	0,0129	0,015
26	15	28	26,65	53,83	31,00	11,7	0,0129	0,011
27	30	26	24,9	50,30	29,00	12,0	0,0128	0,008
27	60	23	21,9	44,24	26,00	12,5	0,0128	0,006
27	120	20	18,9	38,18	23,00	13,0	0,0128	0,004
27	240	19	17,9	36,16	22,00	13,2	0,0128	0,003
27	480	16	14,9	30,10	19,00	13,7	0,0128	0,002
27	1440	13	11,9	24,04	16,00	14,2	0,0128	0,0013
27	2880	12	10,9	22,02	15,00	14,3	0,0128	0,0009

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	48	46,65	94,23	51,00	8,4	0,0129	0,075
26	0,5	46	44,65	90,19	49,00	8,8	0,0129	0,054
26	1	44	42,65	86,15	47,00	9,1	0,0129	0,039
26	2	40	38,65	78,07	43,00	9,7	0,0129	0,028
26	4	32	30,65	61,91	35,00	11,1	0,0129	0,021
26	8	28	26,65	53,83	31,00	11,2	0,0129	0,015
26	15	24	22,65	45,75	27,00	12,4	0,0129	0,012
27	30	15	13,9	28,08	18,00	13,8	0,0128	0,009
27	60	7	5,9	11,92	10,00	15,2	0,0128	0,006
27	120	5	3,9	7,88	8,00	15,5	0,0128	0,005
27	240	4	2,9	5,86	7,00	15,6	0,0128	0,003
27	480	3	1,9	3,84	6,00	15,8	0,0128	0,002
27	1440	3	1,9	3,84	6,00	15,8	0,0128	0,001
27	2880	2	0,9	1,82	5,00	16	0,0128	0,001

NO DISPERSIVO

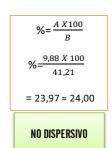

UBICACIÓN: CONECTOR VIA CIRCUNVALACION ATRAZ MANTA 2000

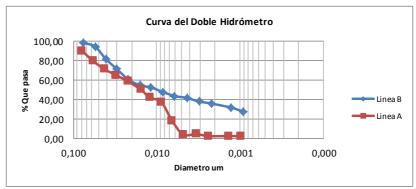

MUESTRA: 7
PROFUNDIDAD mts: 2

DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,53	2,5					
AGENTE DISPERSANTE FACTOR DE CORRECIÓN (a) 1,04									
PASANTE#200	PASANTE # 200 100,00% PESO DEL SUELO (Ws) 50								
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3	3					

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
24	0,25	49	47,15	98,07	52,00	8,1	0,0137	0,078
24	0,5	48	46,15	95,99	51,00	8,3	0,0137	0,056
24	1	46	44,15	91,83	49,00	8,8	0,0137	0,041
24	2	42	40,15	83,51	45,00	9,4	0,0137	0,030
24	4	36	34,15	71,03	39,00	10,4	0,0137	0,022
24	8	31	29,15	60,63	34,00	11,2	0,0137	0,016
24	15	26	24,15	50,23	29,00	12,0	0,0137	0,012
26	30	22	20,65	42,95	25,00	12,7	0,0133	0,009
26	60	19	17,65	36,71	22,00	13,2	0,0133	0,006
26	120	17	15,65	32,55	20,00	13,5	0,0133	0,004
26	240	15	13,65	28,39	18,00	13,8	0,0133	0,003
26	480	14	12,65	26,31	17,00	14,0	0,0133	0,002
26	1440	13	11,65	24,23	16,00	14,2	0,0133	0,001
26	2880	12	10,65	22,15	15.00	14.3	0.0133	0.001

TEMPERATU	TIEMPO	LECTURA DEL	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
RA °C		HIDROMETRO	•			` '		` '
24	0,25	48	46,15	95,99	51,00	8,4	0,0137	0,079
24	0,5	40	38,15	79,35	43,00	9,7	0,0137	0,060
24	1	35	33,15	68,95	38,00	10,6	0,0137	0,045
24	2	30	28,15	58,55	33,00	11,4	0,0137	0,033
24	4	20	18,15	37,75	23,00	13	0,0137	0,025
24	8	18	16,15	33,59	21,00	13,3	0,0137	0,018
24	15	13	11,15	23,19	16,00	14,2	0,0137	0,013
26	30	9	7,65	15,91	12,00	14,8	0,0133	0,009
26	60	7	5,65	11,75	10,00	15,2	0,0133	0,007
26	120	6	4,65	9,67	9,00	15,3	0,0133	0,005
26	240	4	2,65	5,51	7,00	15,6	0,0133	0,003
26	480	3	1,65	3,43	6,00	15,8	0,0133	0,002
26	1440	2	0,65	1,35	5,00	16	0,0133	0,001
26	2880	2	0,65	1,35	5,00	16	0,0133	0,001


UBICACIÓN: RUTA SPONDYLUS LLEGADA A SAN MATEO


MUESTRA: 8
PROFUNDIDAD mts: 2

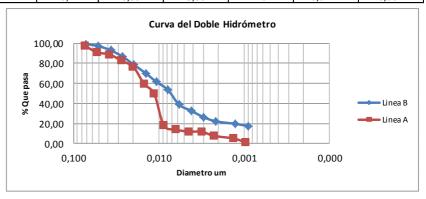
DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,54	2,6					
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	1,04						
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	50						
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)		3					

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
24	0,25	49	47,15	98,07	52,00	8,3	0,0132	0,076
24	0,5	47	45,15	93,91	50,00	8,6	0,0132	0,055
24	1	41	39,15	81,43	44,00	9,6	0,0132	0,041
24	2	36	34,15	71,03	39,00	10,4	0,0132	0,030
24	4	31	29,15	60,63	34,00	11,2	0,0132	0,022
24	8	28	26,15	54,39	31,00	11,7	0,0132	0,016
24	15	27	25,15	52,31	30,00	11,9	0,0132	0,012
23	30	25	22,9	47,63	28,00	12,2	0,0134	0,009
23	60	23	20,9	43,47	26,00	12,5	0,0134	0,006
23	120	22	19,9	41,39	25,00	12,7	0,0134	0,004
24	240	20	18,15	37,75	23,00	13,0	0,0132	0,003
24	480	19	17,15	35,67	22,00	13,2	0,0132	0,0022
24	1440	17	15,15	31,51	20,00	13,5	0,0132	0,0013
24	2880	15	13.15	27.35	18.00	13.8	0.0132	0.0009

TEMPERATU	TIEMPO	LECTURA DEL	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
RA °C		HIDROMETRO	•			` '		
24	0,25	45	43,15	89,75	48,00	8,9	0,0132	0,079
24	0,5	40	38,15	79,35	43,00	9,7	0,0132	0,058
24	1	36	34,15	71,03	39,00	10,4	0,0132	0,043
24	2	33	31,15	64,79	36,00	10,9	0,0132	0,031
24	4	30	28,15	58,55	33,00	11,4	0,0132	0,022
24	8	26	24,15	50,23	29,00	11,2	0,0132	0,016
24	15	22	20,15	41,91	25,00	12,7	0,0132	0,012
23	30	20	17,9	37,23	23,00	13	0,0134	0,009
23	60	11	8,9	18,51	14,00	14,5	0,0134	0,007
23	120	4	1,9	3,95	7,00	15,6	0,0134	0,005
24	240	4	2,15	4,47	7,00	15,6	0,0132	0,003
24	480	3	1,15	2,39	6,00	15,8	0,0132	0,002
24	1440	3	1,15	2,39	6,00	15,8	0,0132	0,001
24	2880	3	1,15	2,39	6,00	15,8	0,0132	0,001

UBICACIÓN: SANTIAGO ARAUZ

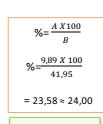
MUESTRA: 9
PROFUNDIDAD mts: 2


DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,46	2,5					
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	1,04						
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	50						
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	4	4					

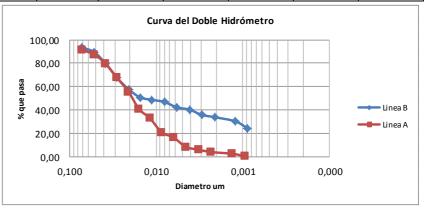
TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	50	47,65	99,11	53,00	8,1	0,0125	0,071
26	0,5	49	46,65	97,03	52,00	8,3	0,0125	0,051
26	1	47	44,65	92,87	50,00	8,6	0,0125	0,037
26	2	44	41,65	86,63	47,00	9,1	0,0125	0,027
26	4	40	37,65	78,31	43,00	9,7	0,0125	0,019
26	8	36	33,65	69,99	39,00	10,4	0,0125	0,014
26	15	32	29,65	61,67	35,00	11,1	0,0125	0,011
26	30	28	25,65	53,35	31,00	11,7	0,0125	0,008
26	60	21	18,65	38,79	24,00	12,9	0,0125	0,006
26	120	18	15,65	32,55	21,00	13,3	0,0125	0,004
26	240	15	12,65	26,31	18,00	13,8	0,0125	0,003
26	480	13	10,65	22,15	16,00	14,2	0,0125	0,002
25	1440	12	9,4	19,55	15,00	14,3	0,0127	0,001
25	2880	11	8,4	17,47	14,00	14,5	0,0127	0,001

TEMPERATU	TIEMPO	LECTURA DEL	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
RA °C	TILIVII O	HIDROMETRO	ПСР	70 IVIAS I IIVO	ICL	L (CIII)	^	D (111111)
26	0,25	48	46,65	97,03	51,00	8,4	0,0125	0,072
26	0,5	45	43,65	90,79	48,00	8,9	0,0125	0,053
26	1	44	42,65	88,71	47,00	9,1	0,0125	0,038
26	2	41	39,65	82,47	44,00	9,6	0,0125	0,027
26	4	38	36,65	76,23	41,00	10,1	0,0125	0,020
26	8	30	28,65	59,59	33,00	11,4	0,0125	0,015
26	15	25	23,65	49,19	28,00	12,2	0,0125	0,011
26	30	10	8,65	17,99	13,00	14,7	0,0125	0,009
26	60	8	6,65	13,83	11,00	15	0,0125	0,006
26	120	7	5,65	11,75	10,00	15,2	0,0125	0,004
26	240	7	5,65	11,75	10,00	15,2	0,0125	0,003
26	480	5	3,65	7,59	8,00	15,5	0,0125	0,002
25	1440	4	2,4	4,99	7,00	15,6	0,0127	0,001
25	2880	2	0,4	0,83	5,00	16	0,0127	0,001

NO DISPERSIVO


UBICACIÓN: SAN MATEO U. E. RIOBAMBA

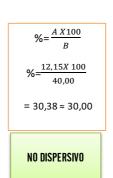
MUESTRA: 10
PROFUNDIDAD mts: 2

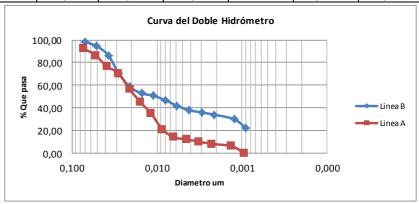

DATOS TECNICOS									
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,65	2,7					
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	0,99						
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	50						
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3	3					

TEMPERATU RA°C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
28	0,25	48	47,15	93,36	51,00	8,4	0,0123	0,071
28	0,5	46	45,15	89,40	49,00	8,8	0,0123	0,052
28	1	41	40,15	79,50	44,00	9,6	0,0123	0,038
28	2	35	34,15	67,62	38,00	10,6	0,0123	0,028
28	4	30	29,15	57,72	33,00	11,4	0,0123	0,021
26	8	27	25,65	50,79	30,00	11,9	0,0125	0,015
26	15	26	24,65	48,81	29,00	12,0	0,0125	0,011
26	30	25	23,65	46,83	28,00	12,2	0,0125	0,008
25	60	23	21,4	42,37	26,00	12,5	0,0127	0,006
25	120	22	20,4	40,39	25,00	12,7	0,0127	0,004
24	240	20	18,15	35,94	23,00	13,0	0,0128	0,003
24	480	19	17,15	33,96	22,00	13,2	0,0128	0,0021
25	1440	17	15,4	30,49	20,00	13,5	0,0127	0,0012
25	2880	14	12,4	24,55	17,00	14,0	0,0127	0,0009

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
28	0,25	47	46,15	91,38	50,00	8,6	0,0123	0,072
28	0,5	45	44,15	87,42	48,00	8,9	0,0123	0,052
28	1	41	40,15	79,50	44,00	9,6	0,0123	0,038
28	2	35	34,15	67,62	38,00	10,6	0,0123	0,028
28	4	29	28,15	55,74	32,00	11,5	0,0123	0,021
26	8	22	20,65	40,89	25,00	12,7	0,0125	0,016
26	15	18	16,65	32,97	21,00	13,3	0,0125	0,012
26	30	12	10,65	21,09	15,00	14,3	0,0125	0,009
25	60	10	8,4	16,63	13,00	14,7	0,0127	0,006
25	120	6	4,4	8,71	9,00	15,5	0,0127	0,005
24	240	5	3,15	6,24	8,00	15,6	0,0128	0,003
24	480	4	2,15	4,26	7,00	15,8	0,0128	0,002
25	1440	3	1,4	2,77	6,00	16,0	0,0127	0,001
25	2880	2	0,4	0,79	5,00	16,0	0,0127	0,001

NO DISPERSIVO

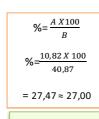

UBICACIÓN: AL LADO DEL PUENTE


MUESTRA: 11 PROFUNDIDAD mts: 3

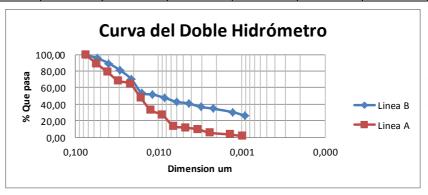
DATOS TECNICOS										
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,66	2,7						
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	0,99							
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	50							
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	3							

TEMPERATU RA°C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	51	49,65	98,31	54,00	7,9	0,0125	0,070
26	0,5	49	47,65	94,35	52,00	8,3	0,0125	0,051
26	1	45	43,65	86,43	48,00	8,9	0,0125	0,037
26	2	37	35,65	70,59	40,00	10,2	0,0125	0,028
26	4	31	29,65	58,71	34,00	11,2	0,0125	0,021
26	8	28	26,65	52,77	31,00	11,7	0,0125	0,015
26	15	27	25,65	50,79	30,00	11,9	0,0125	0,011
26	30	25	23,65	46,83	28,00	12,2	0,0125	0,008
24	60	23	21,15	41,88	26,00	12,5	0,0128	0,006
24	120	21	19,15	37,92	24,00	12,9	0,0128	0,004
24	240	20	18,15	35,94	23,00	13,0	0,0128	0,003
24	480	19	17,15	33,96	22,00	13,2	0,0128	0,002
24	1440	17	15,15	30,00	20,00	13,5	0,0128	0,001
24	2880	13	11.15	22.08	16.00	14.2	0.0128	0.001

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
26	0,25	48	46,65	92,37	51,00	8,4	0,0125	0,072
26	0,5	45	43,65	86,43	48,00	8,9	0,0125	0,053
26	1	40	38,65	76,53	43,00	9,7	0,0125	0,039
26	2	37	35,65	70,59	40,00	10,2	0,0125	0,028
26	4	30	28,65	56,73	33,00	11,4	0,0125	0,021
26	8	24	22,65	44,85	27,00	12,4	0,0125	0,016
26	15	19	17,65	34,95	22,00	13,2	0,0125	0,012
26	30	12	10,65	21,09	15,00	14,3	0,0125	0,009
24	60	9	7,15	14,16	12,00	14,8	0,0128	0,006
24	120	8	6,15	12,18	11,00	15	0,0128	0,005
24	240	7	5,15	10,20	10,00	15,2	0,0128	0,003
24	480	6	4,15	8,22	9,00	15,3	0,0128	0,002
24	1440	5	3,15	6,24	8,00	15,5	0,0128	0,001
24	2880	2	0,15	0,30	5,00	16	0,0128	0,001



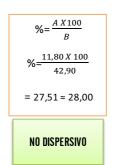
UBICACIÓN: VIA ROCAFUERTE
MUESTRA: 12
PROFUNDIDAD mts: 3

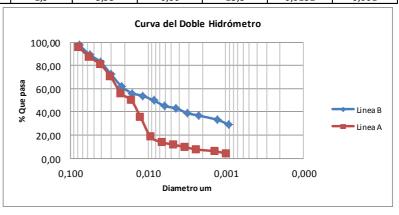

THOI CHEIDAD IIICS.	<u> </u>									
DATOS TECNICOS										
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,53	2,5						
AGENTE DISPERSANTE		FACTOR DE CORRECIÓN (a)	1,04							
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	50							
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	4	1						

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
27	0,25	50	47,9	99,63	53,00	8,1	0,0132	0,075
27	0,5	48	45,9	95,47	51,00	8,4	0,0132	0,054
27	1	45	42,9	89,23	48,00	8,9	0,0132	0,039
27	2	41	38,9	80,91	44,00	9,6	0,0132	0,029
27	4	36	33,9	70,51	39,00	10,4	0,0132	0,021
27	8	28	25,9	53,87	31,00	11,7	0,0132	0,016
27	15	27	24,9	51,79	30,00	11,9	0,0132	0,012
27	30	25	22,9	47,63	28,00	12,2	0,0132	0,008
26	60	23	20,65	42,95	26,00	12,5	0,0133	0,006
26	120	22	19,65	40,87	25,00	12,7	0,0133	0,004
26	240	20	17,65	36,71	23,00	13,0	0,0133	0,003
26	480	19	16,65	34,63	22,00	13,2	0,0133	0,002
26	1440	17	14,65	30,47	20,00	13,5	0,0133	0,0013
26	2880	15	12.65	26.31	18.00	13.8	0.0133	0.0009

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
27	0,25	50	47,9	99,63	53,00	8,1	0,0132	0,075
27	0,5	45	42,9	89,23	48,00	8,9	0,0132	0,056
27	1	40	37,9	78,83	43,00	9,7	0,0132	0,041
27	2	35	32,9	68,43	38,00	10,6	0,0132	0,030
27	4	33	30,9	64,27	36,00	10,9	0,0132	0,022
27	8	25	22,9	47,63	28,00	12,2	0,0132	0,016
27	15	18	15,9	33,07	21,00	13,3	0,0132	0,012
27	30	15	12,9	26,83	18,00	13,8	0,0132	0,009
26	60	9	6,65	13,83	12,00	14,8	0,0133	0,007
26	120	8	5,65	11,75	11,00	15	0,0133	0,005
26	240	7	4,65	9,67	10,00	15,2	0,0133	0,003
26	480	5	2,65	5,51	8,00	15,5	0,0133	0,002
26	1440	4	1,65	3,43	7,00	15,6	0,0133	0,001
26	2880	3	0,65	1,35	6,00	15,8	0,0133	0,001

NO DISPERSIVO


UBICACIÓN: MUELLE JARAMIJO


MUESTRA: 13
PROFUNDIDAD mts: 2

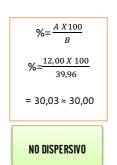
DATOS TECNICOS										
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,48	2,5						
AGENTE DISPERSANTE FACTOR DE CORRECIÓN (a) 1,04										
PASANTE#200	100,00%	PESO DEL SUELO (Ws) 50								
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)		3						

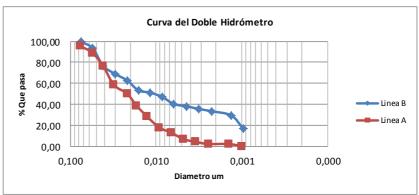
TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
27	0,25	48	46,9	97,55	51,00	8,4	0,0132	0,077
27	0,5	44	42,9	89,23	47,00	9,1	0,0132	0,056
27	1	41	39,9	82,99	44,00	9,6	0,0132	0,041
27	2	36	34,9	72,59	39,00	10,4	0,0132	0,030
27	4	31	29,9	62,19	34,00	11,2	0,0132	0,022
27	8	28	26,9	55,95	31,00	11,7	0,0132	0,016
27	15	27	25,9	53,87	30,00	11,9	0,0132	0,012
27	30	25	23,9	49,71	28,00	12,2	0,0132	0,008
26	60	23	21,65	45,03	26,00	12,5	0,0133	0,006
26	120	22	20,65	42,95	25,00	12,7	0,0133	0,004
26	240	20	18,65	38,79	23,00	13,0	0,0133	0,003
26	480	19	17,65	36,71	22,00	13,2	0,0133	0,002
27	1440	17	15,9	33,07	20,00	13,5	0,0132	0,001
27	2880	15	13,9	28,91	18,00	13,8	0,0132	0,001

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
27	0,25	47	45,9	95,47	50,00	8,6	0,0132	0,077
27	0,5	43	41,9	87,15	46,00	9,2	0,0132	0,057
27	1	40	38,9	80,91	43,00	9,7	0,0132	0,041
27	2	35	33,9	70,51	38,00	10,6	0,0132	0,030
27	4	28	26,9	55,95	31,00	11,3	0,0132	0,022
27	8	25	23,9	49,71	28,00	12,2	0,0132	0,016
27	15	18	16,9	35,15	21,00	13,3	0,0132	0,012
27	30	10	8,9	18,51	13,00	14,7	0,0132	0,009
26	60	8	6,65	13,83	11,00	15	0,0133	0,007
26	120	7	5,65	11,75	10,00	15,2	0,0133	0,005
26	240	6	4,65	9,67	9,00	15,3	0,0133	0,003
26	480	5	3,65	7,59	8,00	15,5	0,0133	0,002
27	1440	4	2,9	6,03	7,00	15,6	0,0132	0,001
27	2880	3	1,9	3,95	6,00	15,8	0,0132	0,001

UBICACIÓN: VIA REFINERIA CARRETERA 1

14


MUESTRA:


PROFUNDIDAD mts:

DATOS TECNICOS										
TIPO DE HIDROMETRO	152H	GRAVEDAD ESPECIFICA DEL SUELO	2,52	2,5						
AGENTE DISPERSANTE FACTOR DE CORRECIÓN (a) 1,04										
PASANTE#200	100,00%	PESO DEL SUELO (Ws)	5	50						
CORRECIÓN MENISCO	3	CORRECION POR CERO (Fz)	4	4						

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
27	0,25	50	47,9	99,63	53,00	8,1	0,0132	0,075
27	0,5	47	44,9	93,39	50,00	8,6	0,0132	0,055
27	1	39	36,9	76,75	42,00	9,9	0,0132	0,042
28	2	35	33,15	68,95	38,00	10,6	0,0130	0,030
28	4	32	30,15	62,71	35,00	11,1	0,0130	0,022
26	8	28	25,65	53,35	31,00	11,7	0,0133	0,016
26	15	27	24,65	51,27	30,00	11,9	0,0133	0,012
26	30	25	22,65	47,11	28,00	12,2	0,0133	0,008
25	60	22	19,4	40,35	25,00	12,7	0,0135	0,006
25	120	21	18,4	38,27	24,00	12,9	0,0135	0,004
24	240	20	17,15	35,67	23,00	13,0	0,0137	0,003
24	480	19	16,15	33,59	22,00	13,2	0,0137	0,002
24	1440	17	14,15	29,43	20,00	13,5	0,0137	0,0013
24	2880	11	8,15	16,95	14,00	14,5	0,0137	0,0010

TEMPERATU RA °C	TIEMPO	LECTURA DEL HIDROMETRO	Rcp	% MAS FINO	RcL	L (cm)	Α	D (mm)
27	0,25	48	45,9	95,47	51,00	8,4	0,0132	0,077
27	0,5	45	42,9	89,23	48,00	8,9	0,0132	0,056
27	1	39	36,9	76,75	42,00	9,9	0,0132	0,042
28	2	30	28,15	58,55	33,00	11,4	0,0130	0,031
28	4	26	24,15	50,23	29,00	11,2	0,0130	0,022
26	8	21	18,65	38,79	24,00	12,9	0,0133	0,017
26	15	16	13,65	28,39	19,00	13,7	0,0133	0,013
26	30	11	8,65	17,99	14,00	14,3	0,0133	0,009
25	60	9	6,4	13,31	12,00	14,8	0,0135	0,007
25	120	6	3,4	7,07	9,00	15,3	0,0135	0,005
24	240	5	2,15	4,47	8,00	15,5	0,0137	0,003
24	480	4	1,15	2,39	7,00	15,6	0,0137	0,002
24	1440	4	1,15	2,39	7,00	15,6	0,0137	0,001
24	2880	3	0,15	0,31	6,00	15,8	0,0137	0,001

ANEXO 4
TABLA RESUMEN DE ESTUDIOS DE CAMPO Y DE ENSAYOS DE LABORATORIO

		GR	ANULOMETR	IA (% QUE PA	SA)	HUMEDAD	LIMIT	ES DE ATTER	BERG	TIPO DE	PESO	VQUMETRICO
MUESTRAS	UBICACIÓN	TAMIZ # 4	TAMIZ # 10	TAMIZ # 40	TAMIZ P. # 200	NATURAL	LIMITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO	SUELO	ESPECIFICO	
		%	%	%	%	%	%	%	%	SUCS	gr/cm³	gr/cm³
MUESTRA 1	BARRIO 5 DE AGOSTO	97,26	92,28	80,31	8,74	1,52	-	-	NP	SP-SM	2,69	1,69
MUESTRA 2	BARRIO 5 DE AGOSTO	80,71	73,40	52,29	5,59	1,52	•	-	NP	SP-SM	2,56	1,91
MUESTRA 3	BARRIO 5 DE AGOSTO	100,00	99,59	96,91	1,74	2,89	•	-	NP	SP	2,73	1,77
MUESTRA 4	COMPLEJO TOHALLI	98,74	97,16	95,06	55,46	5,06	32,50	24,48	8,02	ML	2,10	1,31
MUESTRA 5	AV. LA CULTURA AV. INTERBARRIOS (5 DE JUNIO)	77,95	49,86	24,34	10,69	11,92	32,99	31,98	1,01	SP-SM	2,22	1,23
MUESTRA 6	GASOLINERA PRIMAX	88,03	66,02	42,80	26,60	20,92	23,78	18,95	4,83	SC	2,38	1,26
MUESTRA 7	CONECTOR VIA CIRCUNVALACION	99,45	98,58	86,01	72,68	9,27	36,43	32,52	3,91	ML	2,62	1,47
MUESTRA 8	RUTA SPONDYLUS LLEGADA SAN MATEO	94,71	90,76	80,29	74,21	12,64	70,63	46,86	23,77	МН	2,53	1,50
MUESTRA 9	SANTIAGO ARAUZ	99,64	97,96	79,46	72,85	20,15	61,90	41,66	20,24	МН	2,54	1,82
MUESTRA 10	SAN MATEO U.E.RIOBAMBA	80,18	47,33	14,26	6,49	9,50	53,97	39,39	14,58	SP-SM	2,46	1,69
MUESTRA 11	AL LADO DEL PUENTE	100,00	99,99	99,34	68,70	7,90	40,03	33,25	6,78	ML	2,29	1,57
MUESTRA 12	VIA ROCAFUERTE	99,78	99,24	98,58	91,39	9,04	47,20	39,47	7,73	ML	2,15	1,48
MUESTRA 13	MUELLE JARAMIJO	97,37	96,31	93,79	69,26	5,29	27,03	22,11	4,92	ML	2,08	1,60
MUESTRA 14	VIA REFINERIA CARRETERA 1	95,84	93,76	91,47	25,67	3,96	-	-	NP	SM	2,48	1,38
MUESTRA 15	VIA REFINERIA CARRETERA 2	85,57	78,51	41,61	13,94	8,53	-	-	NP	SM	2,26	1,68
MUESTRA 16	SITIO INDUMASTER	90,85	88,80	76,77	19,10	2,87	•	-	NP	SM	2,52	1,97

	SUELOS DISPERSIVOS	5	SUELOS COLAPSABLES
CRUMB	PINHOLE TEST	DOBLE HIDROMETRO	LIMITE LIQUIDO
Grado	Nomenclatura	%	Metodologia
GRADO 1	ND1	27,14	
Ninguna reaccion	No Dispersivo	<30 No dispersivo	-
GRADO 1	ND1	27,42	
Ninguna reaccion	No Dispersivo	<30 No dispersivo	-
GRADO 1	ND1	29,88	
Ninguna reaccion	No Dispersivo	<30 No dispersivo	-
GRADO 1	ND1	28,80	Cuala astable
Ninguna reaccion	No Dispersivo	<30 No dispersivo	Suelo estable
GRADO 1	ND1	29,07	No coloneable
Ninguna reaccion	No Dispersivo	<30 No dispersivo	No colapsable
GRADO 1	ND1	24,87	Colonachia
Ninguna reaccion	No Dispersivo	<30 No dispersivo	Colapsable
GRADO 1	ND1	29,19	Colonadolo
Ninguna reaccion	No Dispersivo	<30 No dispersivo	Colapsable
GRADO 2	ND1	23,97	No coloncable
Reaccion Ligera	No Dispersivo	<30 No dispersivo	No colapsable
GRADO 2	ND1	27,66	No coloncable
Reaccion Ligera	No Dispersivo	<30 No dispersivo	No colapsable
GRADO 1	ND1	23,58	No coloncable
Ninguna reaccion	No Dispersivo	<30 No dispersivo	No colapsable
GRADO 2	ND1	30,38	No coloncable
Reaccion Ligera	No Dispersivo	<30 No dispersivo	No colapsable
GRADO 1	ND1	26,47	No coloncable
Ninguna reaccion	No Dispersivo	<30 No dispersivo	No colapsable
GRADO 2	ND1	27,51	Colonsable
Reaccion Ligera	No Dispersivo	<30 No dispersivo	Colapsable
GRADO 1	ND1	30,03	
Ninguna reaccion	No Dispersivo	<30 No dispersivo	-
GRADO 1	ND1	23,32	
Ninguna reaccion	No Dispersivo	<30 No dispersivo	-
GRADO 1	ND1	27,38	
Ninguna reaccion	No Dispersivo	<30 No dispersivo	-