

CARRERA DE INGENIERÍA AGROPECUARIA TRABAJO DE TITULACIÓN

TRABAJO DE TITULACION PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AGROPECUARIO

TÍTULO

Utilización de hormonas para estimular racimos florales en arándano (*Vaccinium corymbosum L.*) en la parroquia Atahualpa Cantón Pedernales

AUTOR:

Pilozo Vélez Luis Fernando

TUTOR:

Ing. Macías Chila Raúl Mgs.

Pedernales -Manabí-Ecuador 2025-1

CERTIFICACIÓN DE APROBACIÓN DEL TRABAJO DE TITULACIÓN

El tribunal evaluador

Certifica:

Que el trabajo de fin de carrera modalidad Proyecto de Investigación titulado: Utilización de hormonas para estimular racimos florales en arándano (Vaccinium corymbosum L.) en la parroquia Atahualpa Cantón Pedernales, realizado y concluido por el señor Pilozo Vélez Luis Fernando, ha sido revisado y evaluado por los miembros del tribunal.

El trabajo de fin de carrera antes mencionado cumple con los requisitos académicos, científicos y formales suficientes para ser aprobado.

Pedernales, 08 de septiembre de 2025

Para dar testimonio y autenticidad firman:

Ing. Derli Álava Rosado, PhD.

PRESIDENTE DE TRIBUNAL

Ing. Mendieta Renato Mg.

MIEMBRO DEL TRIBUNAL

Ing. Andrade Cristopher Mg.

MIEMBRO DEL TRIBUNAL

CERTIFICACIÓN DEL TUTOR

En calidad de docente tutor de la Extensión Pedernales de la Universidad Laica Eloy

Alfaro de Manabí, CERTIFICO:

Haber dirigido y revisado el trabajo de investigación, bajo la autoría del estudiante Pilozo

Vélez Luis Fernando, legalmente matriculada en la carrera de Ingeniería Agropecuaria,

período académico 2025-1 cumpliendo el total de 400 horas, bajo la opción de titulación de

trabajo de investigación, cuyo tema del proyecto es "Utilización de hormonas para estimular

racimos florales en arándano (Vaccinium corymbosum L.) en la parroquia Atahualpa Cantón

Pedernales".

La presente investigación ha sido desarrollada en apego al cumplimiento de los requisitos

académicos exigidos por el Reglamento de Régimen Académico y en concordancia con los

lineamientos internos de la opción de titulación en mención, reuniendo y cumpliendo con los

méritos académicos, científicos y formales, suficientes para ser sometida a la evaluación del

tribunal de titulación que designe la autoridad competente.

Particular que certifico para los fines consiguientes, salvo disposición de Ley en contrario.

Pedernales, 08 de septiembre de 2025

Lo certificó

Ing. Macías Chila Raúl Mgs

Docente Tutor Área de agropecuaria DERECHO DE AUTORÍA

Yo, Pilozo Vélez Luis Fernando, con cedula de identidad No, 131398322-1 declaro que

el presente trabajo de titulación "Utilización de hormonas para estimular racimos florales en

arándano (Vaccinium corymbosum L.) en la parroquia Atahualpa Cantón Pedernales" ha sido

desarrollado considerando los métodos de investigación existente y respetando los derechos

intelectuales de terceros considerando en las citas bibliográficas.

Consecuentemente declaro que las ideas y contenidos expuestos en el presente trabajo son

de mi autoría, en virtud de ello me declaro responsable del contenido, veracidad y alcance de

la investigación antes mencionada.

Pedernales, 08 de septiembre de 2025

Pilozo Vélez Luis Fernando

C.C.: 1313983221

DEDICATORIA

Agradezco en primer lugar a Dios y la virgen de Guadalupe por llenarme de fe y fortaleza en los momentos difíciles y además la sabiduría y paciencia para poder culminar mi camino de universitario.

A mi querido padre Simón Pilozo y a mi querida madre Laura Vélez, quienes con su apoyo incondicional han sido un pilar fundamental, para culminar mis estudios y le agradezco a Dios por permitirme tenerlo con vida a ambos los amos. A mis hermanos Diana, David, Patricia, Paul y Leonela Pilozo Velez, ya que me motivaban cada día a superarme como un profesional y poder lograr mi objetivo que era culminar mi camino universitario.

Finalmente, me lo dedico a mí mismo, porque a pesar de todos los obstáculos que se me presento en el camino como un profesional, me ha demostrado que puedo lograr cumplir lo que me proponga sin importar el tiempo.

Luis Pilozo Vélez

AGRADECIMIENTO

Agradezco primeramente a Dios y a la Virgen de Guadalupe por llenarme de fe, salud y fuerza que me permitió culminar mi carrera con éxito como un profesional. A mi padre, mi madre y mis hermanos que siempre estuvieron hay cada día motivando y apoyando, para poder culminar mis estudios como todo un profesional, y que confiaron plenamente en mí.

Agradezco a la persona que en su momento formo parte de mi vida, la Licenciada María Villarreal por haberme impulsado a lograr este sueño que es ser un profesional, voy a estar agradecido con ella siempre. Un profundo agradecimiento a la Universidad Laica Eloy Alfaro de Manabí Extensión Pedernales, especialmente a los docentes que me impartieron sus conocimientos, y a mi tutor de tesis Ing. Raúl Macías quien estuvo apoyando en todo momento y me guio en el desarrollo de mi trabajo para culminar con éxito.

A mis compañeros de clases que también formaron parte de esta vida profesional, que también estuvieron en las buenas y malas como a Diana Briones, Patricia Solórzano, Yajaira Zambrano y a la Sr Cruz Cevallos, siempre voy a estar agradecido con ellas, que me enseñaron muchas cosas y me tuvieron paciencia, aunque no sea sangre de mi sangre le voy a querer como unas hermanas, gracias a todas mis queridas colegas.

Le agradezco a la Licenciada Eliana Mera, por haber estado presente y brindarme su apoyo cada vez que le pedía. A mi querida compañera de vida y futura Bióloga, María José Caicedo, por formar parte de mi vida eh impulsarme cada día a ser una mejor persona y poder echar ese aliento que necesitaba cada momento en la etapa estudiantil, le agradezco a Dios que la puso en mi camino, gracias por todo de todo corazón.

Luis Pilozo Vélez

RESUMEN

El presente ensayo experimental de carácter científico se realizó con el objetivo de determinar

el efecto de hormonas en la estimulación de racimos florales en arándano (Vaccinium

corymbosum L.) en la parroquia Atahualpa Cantón Pedernales, aplicando un diseño de

bloques completamente al azar, las variables en estudio son: (Número de frutos por planta,

diámetro de arándanos, número de ramificaciones, peso en gramo del fruto, número de

flores). Para el análisis de los datos se utilizó un modelo lineal general como resultado se

obtuvo que al realizar la comparación de las dosis bajas y altas de los tratamientos aplicados

sobre la variable de racimos florales se obtuvo que, la aplicación de AIA 200-400 ppm, GA

50-100 ppm y CK 10-20 ppm, responden muy bien. Las variables evaluadas dentro del

ensayo experimental respondieron efectivamente a la aplicación de dosis altas AIA 200-400

ppm, GA 50-100 ppm y CK 10-20 ppm), obteniendo resultados prometedores en cuanto a

diámetro y peso de fruto, racimos florales, numero de flores, entre otras. Los costos

generados para la aplicación de las fitohormonas sobre el lote de plantas de arándanos en

producción fueron de \$109,00 adicional a ello los valores promedios de los tratamientos esta

entre: Auxinas \$50,00 Giberelinas \$60,00 y Citoquininas \$70,00.

Palabras claves: Efecto, hormonas, estimulación, producción.

vii

ABSTRACT

This experimental test of a scientific nature was carried out with the objective of determining

the effect of hormones in the stimulation of floral clusters in blueberry (Vaccinium

corymbosum L.) in the Atahualpa parish, Pedernales Canton, applying a completely

randomized block design, the variables under study are: (Number of fruits per plant, diameter

of blueberries, number of branches, weight in grams of the fruit, number of flowers). For the

analysis of the data a general linear model was used as a result it was obtained that when

comparing the low and high doses of the treatments applied on the variable of floral clusters

it was obtained that the application of AIA 200-400 ppm, GA 50-100 ppm and CK 10-20

ppm, respond very well. The variables evaluated in the experimental trial responded

effectively to the application of high doses of AIA (200-400 ppm, GA (50-100 ppm) and CK

(10-20 ppm), obtaining promising results in terms of fruit diameter and weight, flower

clusters, number of flowers, among others. The costs generated for the application of

phytohormones on the batch of blueberry plants in production were \$109.00, in addition to

the average values of the treatments being between: Auxins \$50.00, Gibberellins \$60.00 and

Cytokinins \$70.00.

Keywords: Effect, hormones, stimulation, production.

viii

ÍNDICE GENERAL

CERTIFICACION DE APROBACION DEL TRABAJO DE TI	TULACION;Error!
Marcador no definido.	
CERTIFICACIÓN DEL TUTOR	i
DERECHO DE AUTORÍA	ii
APROBACIÓN DEL TRIBUNAL	iii
DEDICATORIA	V
AGRADECIMIENTO	vi
RESUMEN	vii
ABSTRACT	viii
INDICE GENERAL	ix
INDICE DE GRÀFICOS	xv
ÍNDICE DE TABLAS	xvi
ÍNDICE DE ANEXOS	xvii
CAPÍTULO I	1
1. CONTEXTUALIZACIÓN DE LA INVESTIGACIÓN	1
1.1 INTRODUCCIÓN	1
1.2 PLANTEAMIENTO DEL PROBLEMA	4
1.2.1 IDENTIFICACIÓN DE VARIABLES	5
Variable independiente:	5

• Variab	le dependiente:	5
1.2.2	PREGUNTAS DE INVESTIGACIÓN	5
1.1 HI	POTESIS;Error! Marcador no d	efinido.
1.1 OE	BJETIVOS DEL TRABAJO DE INVESTIGACIÓN	6
1.1.1	Objetivo general	6
1.1.2	Objetivos específicos	6
1.2 JU	STIFICACIÓN	7
1.3 M	ARCO TEÒRICO	10
1.3.1	Antecedentes	10
1.4 Ba	ses Teóricas	12
1.4.1	Arándano (Vaccinium corymbosum L.)	12
1.4.2	Requisitos agroclimáticos para producir de arándanos	12
1.4.3	Taxonomía	13
1.4.4	Morfología del arándano	14
Raíz:		14
Hojas		14
Flores		14
Fruto		14
1.4.5	Plan de manejo y Fertilización del arándano	15
1.4.6	Hormonas en el cultivo de arándano	17

	1.4.7	Auxinas	. 18
	1.4.8	Giberelinas	. 18
	1.4.9	Citoquininas	. 19
CA	APITULO	II	. 20
2.	METO	DOLOGÌA	20
	2.1 Mé	todos de investigación	. 20
	2.1.1	Localización	. 20
	2.1.2	Ubicación geográfica	. 20
	2.1.3	Duración	. 21
	2.1.4	Características climáticas	. 21
	2.2 MÉ	ÉTODO Y TÉCNICA DE LA INVESTIGACIÓN	. 22
	2.2.1	Método de investigación	. 22
	2.3 Téc	cnicas de investigación	. 22
	2.4 Tip	oo y diseño de la investigación	. 22
	2.4.1	Diseño de la investigación	. 23
	2.4.2	Estructura de los tratamientos	. 23
	Auxina	50-100 ppm + Giberelina 5-10 ppm + Citoquinina 1-3 ppm	. 23
	Auxina	200-400 ppm + Giberelina 50-100 ppm + Citoquinina 10-20 ppm	. 23
	Sin apli	icación	. 23
	2.5 DIS	SEÑO Y UNIDAD EXPERIMENTAL	. 24

2.5	.1	Características generales de la parcela experimental	. 24
2.5	5.2	Características del bloque experimental	. 24
2.5	5.3	Características del área experimental	. 25
2.5	5.4	Análisis de Variancia	. 25
2.5	5.5	Modelo aditivo lineal	. 26
2.6	Mat	teriales y Equipos	. 26
2.7	Var	iables de respuesta	. 26
2.7	'.1	Variable independiente	. 26
Utilizac	ión	de hormonas para estimular racimos florales en arándano (Vaccin	ium
corymbo	osum	L.)	. 26
2.7	7.2	Variables dependientes	. 27
2.8	Mai	nejo del experimento	. 27
2.8	3.1	Número de frutos por planta	. 27
2.8	3.2	Peso de fruto por planta	. 27
2.8	3.3	Diámetro promedio	. 27
2.8	3.1	Número de ramificaciones y Número de flores	. 27
CAPITU	JLO	III	. 28
3. RESU	JLTA	ADOS Y DISCUSIÓN	. 28
3.1 R	esult	ado de métodos y técnicas de investigación	. 28
3.1	.1 Co	omprobación de hipótesis o contestación a las preguntas de investigación	28

3.2 Comparar la eficiencia de las hormonas utilizadas en la estimulación de racimo
florales en arándano (Vaccinium corymbosum L.)
3.2.1 Modelo lineal general: N° DE RAMIFICACIONES vs. FITOHORMONAS
BLOQUES2
3.2.2 Comparaciones para N° DE RAMIFICACIONES
3.3 Determinar el efecto de las hormonas en la producción de los frutos de Arándano
(Vaccinium corymbosum L.)
3.3.1 Modelo lineal general: Frutos por planta vs. FITOHORMONAS; BLOQUE 3
3.3.2 Comparaciones para Frutos por planta
3.4 Evaluar el efecto de las hormonas en las características agronómicas de las plantas d
Arándanos (Vaccinium corymbosum L.)
3.4.1 Modelo lineal general: N° de Flores vs. FITOHORMONAS; BLOQUES 3
3.5 Modelo lineal general: Diámetro Arándanos (cm) vs. FITOHORMONAS; BLOQUE
4
3.5.1 Comparaciones para Diámetro Arándanos (cm)
3.6 Modelo lineal general: Peso arándanos en gr vs. FITOHORMONAS; BLOQUES 4
3.6.1 Comparaciones para Peso Arándanos en gr
3.7 Determinar el efecto de las hormonas sobre los costos del cultivo de Arándan
(Vaccinium corymbosum L.)4
3.2 Discusión de los resultados
4. CONCLUSIONES 5

5. RECOMENDACIONES	53
6. BIBLIOGRAFÌA	54
ANEXOS	58

ÍNDICE DE GRÁFICOS

Gràfico 1.	Ubicación del ensayo	21
Gràfico 2.	Gráfica de efectos principales para N° DE RAMIFICACIONES	30
Gràfico 3.	Gráfica de interacción para N° DE RAMIFICACIONES	30
Gràfico 4.	Gráfica de efectos principales para Frutos por planta	34
Gràfico 5.	Gráfica de interacción para Frutos por planta	34
Gràfico 6.	Gráfica de efectos principales para N° de Flores	38
Gràfico 7.	Gráfica de interacción para N° de Flores	38
Gràfico 8.	Gráfica de efectos principales para Diámetro Arándanos (cm)	42
Gràfico 9.	Gráfica de interacción para Diámetro Arándanos (cm)	42
Gràfico 10.	Gráfica de efectos principales para Peso Arándanos en gr	46
Gràfico 11.	Gráfica de interacción para Peso Arándanos en gr	46

ÍNDICE DE TABLAS

Tabla 1.	Taxonomìa del arándano Vaccinium corymbosum L	13
Tabla 2.	Características climáticas de la parroquia Atahualpa	21
Tabla 3.	Estructura de los tratamientos	23
Tabla 4.	El esquema del Análisis de la Varianza se indica a continuación	25
Tabla 5.	Materiales	26
Tabla 6.	Información del factor	28
Tabla 7.	Análisis de Varianza	29
Tabla 8.	Comparaciones por parejas de Tukey: FITOHORMONAS	29
Tabla 9.	Resumen del modelo	31
Tabla 10.	Ecuación de regresión	31
Tabla 11.	Ajustes y diagnósticos para observaciones poco comunes	31
Tabla 12.	Información del factor	32
Tabla 13.	Análisis de Varianza	32
Tabla 14.	Comparaciones por parejas de Tukey: FITOHORMONAS	33
Tabla 15.	Resumen del modelo	35
Tabla 16.	Ecuación de regresión	35
Tabla 17.	Ajustes y diagnósticos para observaciones poco comunes	35
Tabla 18.	Información del factor	36
Tabla 19.	Análisis de Varianza	36
Tabla 20.	Comparaciones por parejas de Tukey: FITOHORMONAS	37

Tabla 21.	Resumen del modelo	. 39
Tabla 22.	Ecuación de regresión	. 39
Tabla 23.	Ajustes y diagnósticos para observaciones poco comunes	. 39
Tabla 24.	Información del factor	. 40
Tabla 25.	Análisis de Varianza	. 40
Tabla 26.	Comparaciones por parejas de Tukey: FITOHORMONAS	. 41
Tabla 27.	Resumen del modelo	. 43
Tabla 28.	Ecuación de regresión	. 43
Tabla 29.	Ajustes y diagnósticos para observaciones poco comunes	. 43
Tabla 30.	Información del factor	. 44
Tabla 31.	Análisis de Varianza	. 44
Tabla 32.	Comparaciones por parejas de Tukey: FITOHORMONAS	. 45
Tabla 33.	Resumen del modelo	. 47
Tabla 34.	Ecuación de regresión	. 47
Tabla 35.	Costos de Fitohormonas y sus aplicaciones	. 48
Tabla 36.	Costos de materiales y actividades	. 49
	ÍNDICE DE ANEXOS	
Anexos 1.	Cultivo de arándanos	. 58
Anexos 2.	Toma de datos	. 59
Anexos 3.	Plantas de arándano antes y después de aplicar las fitohormonas	. 59

CAPÍTULO I

1. CONTEXTUALIZACIÓN DE LA INVESTIGACIÓN

1.1 INTRODUCCIÓN

El arándano (*Vaccinium corymbosum L.*) es una planta nativa de América del Norte cuyos frutos son altamente solicitados en todo el mundo debido a sus características sensoriales (sabor, peso, textura, y olor) y sus propiedades funcionales (ricos en ácidos fenólicos, flavonoides y taninos). Los aspectos tecnológicos más importantes que determinan la calidad del arándano incluyen el peso fresco, el tamaño, los sólidos solubles y la firmeza, los cuales dependen principalmente de la combinación del clima, la variedad y las prácticas agrícolas empleadas en el manejo del cultivo (Huerta & Jorquera, 2023).

El cultivo de arándano, fue cultivada hace pocos años y su cultivar ha aumentado considerablemente, la superficie dedicada a su cultivo debido a la elevada demanda de su fruto, que destaca por sus propiedades nutritivas y organolépticas. Este cultivo se distingue por poseer una larga vida útil, que puede superar los 20 años si se maneja correctamente y se encuentra en condiciones edafoclimáticas adecuadas. Dentro de las variedades cultivables de esta especie, se destacan el arándano *highbush*, *lowbush* y el arándano ojo de conejo, siendo el primero el más común en varias áreas productoras. En la actualidad, el cultivo de arándano se ha expandido en naciones como China, Japón, Chile, Nueva Zelanda, Argentina y México. A nivel global, la superficie destinada a su cultivo ha crecido en aproximadamente 15,000 hectáreas en aproximadamente cuatro años (INTAGRI, 2017).

En Ecuador, el cultivo de arándanos ha experimentado un notable aumento en las áreas de la Sierra y la Costa gracias a las variaciones en la temperatura y a la implementación de métodos semihidropónicos por parte de empresas como: Agrícola Oro Azul y Biovegetal. El país se beneficia de una ventaja competitiva al poder exportar arándanos hacia Asia, Europa y el mundo árabe, gracias a su posición ecuatorial y a un clima estable a lo largo del año. Con el tiempo, la producción por planta incrementa a 3. 5 kilogramos en el cuarto año de cosecha, a pesar de los elevados costos iniciales y las limitaciones en la importación de plantas y tecnología. Este sector presenta un crecimiento prometedor (Gonzalez, 2018).

Las hormonas vegetales, como en todos los vegetales, cumplen una función central en el desarrollo del cultivo de arándano, desde la brote hasta la maduración del fruto. Comprender cómo interactúan y cómo influyen en el crecimiento y las relaciones en las diferentes competencias internas que ocurren en la planta, permite tomar decisiones agronómicas más precisas en su manejo agronómico (Fichet, 2025).

Los reguladores de crecimiento como las auxinas, son capaces de controlar diversos procesos vegetales, proceden principalmente a nivel celular influyendo la elongación, diferenciación y división celular, además es considerada un tipo de morfógeno que es capaz de inducir diferenciación en las hojas, raíces y tallos, de la misma forma dar iniciación a ellos. Del mismo modo, reguladores de crecimiento como las citoquininas poseen la capacidad e inciden y estimulan una división y proliferación celular, permitiendo estimular el desarrollo fotomorfogénico vegetal y potencia la regeneración y aumento del desarrollo de brotes a nivel vegetal (España, 2025).

Las giberelinas participan en procesos como la elongación del tallo, el cuajado del fruto y su posterior crecimiento. El ABA (ácido abscísico) interviene en la maduración del fruto y

en la respuesta a estreses abióticos como son: hídrico, salino o por bajas temperaturas. Quizás uno de sus mayores aportes es regular la apertura estomática y con ello el control de la entrada y salida de gases, pérdida de agua y con ello regular la temperatura de la hoja. El etileno, además de inducir la maduración, tiene un papel relevante en situaciones de estrés biótico y abiótico (Fichet, 2025).

En la actualidad la producción de arándanos (*Vaccinium corymbosum L.*) ha revolucionado el mercado tanto nacional como internacional, debido a las múltiples propiedades que posee entre ellas antioxidantes, vitaminas, fibras y minerales, por lo que los sistemas productivos para este cultivo son cada vez más tecnificados y el productor busca la forma de aumentar el rendimiento productivo de las plantas, con la finalidad de obtener rentabilidad y utilizar eficientemente los recursos, por lo que en las fitohormonas han encontrado una respuesta a los problemas de crecimiento, desarrollo y producción tanto de las plantas como de los frutos.

En la presente investigación se determinó el efecto de hormonas (Auxinas, Giberelinas y Citoquininas) para estimular los racimos florales en el cultivo de arándano (*Vaccinium corymbosum L.*) establecido en la parroquia Atahualpa Cantón Pedernales, por medio de comparaciones para medir la eficiencia de estas hormonas sobre la estimulación de los racimos florales, el efecto que tienen en la producción de los frutos y sobre las variables agronómicas en el cultivo como: Número de frutos por planta, diámetro de arándanos, número de ramificaciones, peso en gramo del fruto, número de flores y los costos que se generan al aplicar estas fitohormonas, los resultados obtenidos muestran que esta

investigación contribuirá al desarrollo de los productores de arándanos en el cantón pedernales.

1.2 PLANTEAMIENTO DEL PROBLEMA

En la actualidad, en el país existe una deficiente transferencia de tecnología en relación a los grandes beneficios que ofrece la producción de arándanos. Por esta razón, se necesita llevar a cabo investigaciones que expliquen de manera clara y efectiva la relevancia del arándano para la sociedad y el mercado (Bustillo, 2018).

Las bayas de arándano son particularmente vulnerables a la pérdida de calidad, debido a que poseen una piel o cutícula muy delgada, lo que las hace propensas a perder firmeza y peso por deshidratación. Cuando una planta enfrenta estrés, retiene su agua y ajusta el funcionamiento de los estomas. Además, se incrementa la producción de ceras en la cutícula, lo que provoca una mayor dispersión de la luz solar, actuando casi como un espejo que no retiene tanto calor y, al mismo tiempo, contribuye a reducir la pérdida de agua (Balbontín, 2023).

De acuerdo a los párrafos antes mencionados la aplicación de poca tecnología y manejos inadecuados los frutos de los cultivos de arándanos presentan problemas tanto internos como externos que afecta su rendimiento y la calidad del mismo, esto se ve influenciado por las condiciones climáticas, mal uso de los recursos agrícolas, deficiencia en los programas de fertilización y aplicación de fitohormonas que ayudan al mejoramiento de la producción, por lo cual en el presente trabajo de investigación practica y experimental se plantea como solución a esta problemática la aplicación de hormonas como las auxinas, giberelinas y

citoquininas que poseen la capacidad para elevar la producción por sus propiedades de mejoramiento de yemas productoras, restablece fácilmente las raíces, prologan la calidad del frutos posterior a su cosecha, contribuyendo así a el aumento del rendimiento de los frutos.

1.2.1 IDENTIFICACIÓN DE VARIABLES

- Variable independiente: Utilización de hormonas para estimular racimos florales en arándano (*Vaccinium corymbosum L.*)
- Variable dependiente: Toma de datos biométricos (Número de frutos por planta, diámetro de arándanos, número de ramificaciones, peso en gramo del fruto, número de flores).

1.2.2 PREGUNTAS DE INVESTIGACIÓN

Dentro del presente trabajo de investigación de carácter experimental se plantean las siguientes interrogantes e hipótesis, por medio de ellas se alcanzaron los objetivos planteados y se obtuvieron resultados favorables en la utilización de hormonas para estimular racimos florales en arándano (*Vaccinium corymbosum L.*) en la parroquia Atahualpa Cantón Pedernales.

¿Utilizar fitohormonas para la estimulación de racimos florales en arándanos es relativamente eficiente en comparación con la no utilización?

¿El uso de las fitohormonas afectará la producción del fruto en el cultivo de Arándanos en la parroquia Atahualpa-Cantón Pedernales?

¿El uso de las fitohormonas tiene efecto en las características agronómicas de las plantas de Arándanos, bajo condiciones ambientales de la parroquia Atahualpa-Cantón Pedernales?

¿El uso de las fitohormonas presentan efectos sobre los costos del cultivo de Arándanos, y puede ser manejado por el pequeño agricultor?

1.1 HIPÓTESIS

Ho: Hipótesis nula donde se establece que la utilización de hormonas (auxinas, giberelinas y citoquininas) para estimular racimos florales en arándano (*Vaccinium corymbosum L.*) no presentaron efectos positivos en la producción de arándanos.

H1: Hipótesis alternativa donde se establece que al menos uno de los tratamientos donde se utilizaron hormonas (auxinas, giberelinas y citoquininas) para estimular racimos florales en arándano (*Vaccinium corymbosum L.*) presentaron efectos positivos en la producción de arándanos.

1.1 OBJETIVOS DEL TRABAJO DE INVESTIGACIÓN

1.1.1 Objetivo general

Determinar el efecto de hormonas en la estimulación de racimos florales en arándano (*Vaccinium corymbosum L.*) en la parroquia Atahualpa Cantón Pedernales

1.1.2 Objetivos específicos

- ✓ Comparar la eficiencia de las hormonas utilizadas en la estimulación de racimos florales en arándano (*Vaccinium corymbosum L.*)
- ✓ Medir la producción de frutos de Arándanos (*Vaccinium corymbosum L.*) después de

- aplicar hormonas estimulantes.
- ✓ Evaluar el efecto de las hormonas en las características agronómicas de las plantas de Arándanos (*Vaccinium corymbosum L.*).
- ✓ Realizar un análisis de los costos económicos al aplicar hormonas estimulantes en el cultivo de Arándano (*Vaccinium corymbosum L.*).

1.2 JUSTIFICACIÓN

El cultivo de arándano a nivel mundial, se ha convertido en una de las frutas más solicitadas tanto en el mercado nacional como en el internacional, lo que menciona la necesidad de mantener un nivel de producción estable a lo largo del tiempo. Estados Unidos y Canadá, como líderes en el cultivo, han desarrollado aproximadamente 440. 000 hectáreas de tierras productivas, lo que evidencia un notable incremento en su consumo. En lo que respecta a la producción en Sudamérica, esta se encuentra alrededor de 124. 000 toneladas, de las cuales 87. 000 se destinan a la venta fresca y el resto a productos elaborados (Bustillo, 2018).

El arándano es un arbusto perenne de la familia *Ericaceas*, género *Vaccinium*. Tiene como centro de origen América (25% en Norte América y un 10% de Centro y Sur América). Estados Unidos es el principal productor y exportador a nivel mundial. Actualmente es un cultivo con una gran demanda a nivel mundial por sus contenidos en antioxidantes (betacaroteno, antocianinas, vitamina C y ácido fólico), fibra y minerales. Se ha informado la presencia en Ecuador de aproximadamente unas 230 especies de la familia *Ericacea*, 131 de estas especies son endémicas, las cuales en su mayoría se ubican en bosques montanos nublados (1700–2500 msnm), con suelo bien drenados, ácidos, con alto contenido de material

orgánica, la presencia de niebla, humedad y lluvias es un requerimiento bioecológico necesario para su buen desarrollo (Mora et al., 2023).

El arándano ha representado un cultivo de importancia económica y nutricional en varias partes del mundo. La demanda de arándano está creciendo a nivel global, y Ecuador se destaca como un producto fundamental, especialmente en sus intercambios comerciales con Europa. Esta conexión entre las tierras ecuatorianas y los mercados europeos ha favorecido la economía del país, también ha brindado a los consumidores europeos la oportunidad de aprovechar los beneficios saludables y el sabor de los arándanos provenientes de Ecuador. Desde su aparición en el ámbito agrícola a partir de 2015, el arándano ha registrado un desarrollo significativo. Empezando con pequeños grupos de emprendedores, este cultivo ha fortalecido su posición en los últimos años, resaltando por ofrecer productos de elevada calidad tanto en el mercado nacional e internacional (Montenegro & Aguirre, 2024).

La exploración de métodos que puedan ser implementados para mejorar las condiciones de desarrollo de las plantas, fundamentándose en el uso de fitohormonas, ha permitido un control específico sobre procesos tales como la producción de metabolitos secundarios, la duración del crecimiento, la reducción de la presencia de patógenos, la estimulación de la maduración de los frutos, el cruce de especies vegetales para avanzar en la mejora de productos industriales (como los alimentos), entre otros, que normalmente son complicados de regular en cultivos convencionales. Cada fitohormona, dependiendo de su estructura química, establece distintas interacciones para lograr sus objetivos. Las fitohormonas más utilizadas en el crecimiento de las plantas incluyen auxinas, giberelinas y citoquininas, entre otras (Alcantara et al., 2019).

Los reguladores fitohormonales ejercen una influencia, ya sea directa o indirecta, sobre las plantas, dependiendo del tipo de producto que se use. Las auxinas, por ejemplo, fomentan un mayor desarrollo de raíces y mejor fijación, además de activar los receptores de estrés; las citocininas favorecen un crecimiento óptimo de la planta y estimulan receptores; mientras que las giberelinas pueden suprimir las defensas. De manera indirecta, estos reguladores contribuyen a generar plantas más resistentes. En cuanto a los reguladores fitohormonales de efecto directo, se encuentran los salicilatos, los brasinoesteroides y el ácido abscísico, que inciden en la creación de antioxidantes, compuestos defensivos, osmolitos, rutas de escape y adaptaciones al estrés (Guzmán, 2025).

Las fitohormonas son capaces de afectar el crecimiento equilibrado de los vegetales. Además, subrayan que, gracias a estas hormonas, se puede fomentar la absorción de nutrientes, se fortalece la resistencia al estrés abiótico y, incluso, se puede aumentar el tamaño de las frutas, todos elementos esenciales en un sector que exige cada vez más. Un punto importante en la eficacia de los RDC (Reguladores de Crecimiento) está relacionado con las metodologías utilizadas para aplicar estos compuestos en las plantas. Muchos de los resultados adversos o inesperados de estas sustancias se asocian a una aplicación desigual en la copa de las plantas. Así, las áreas de la copa más cercanas a las boquillas de las pulverizadoras suelen recibir un exceso de producto, mientras que las zonas más alejadas reciben cantidades inadecuadas para conseguir los resultados que se buscan (Rivas, 2018).

En la actualidad la producción de arándanos representa una fuente de ingresos económicos tanto a nivel local, nacional como internacional en varios países donde las condiciones climáticas son las adecuadas para el desarrollo del cultivo, además se cuenta con la tecnología

y conocimiento para poder desarrollar este tipo de cultivo, a pesar de toda esta preparación aún se enfrentan desafíos en cuanto a las exigencias de los consumidores por recibir un fruto que sea acorde a sus expectativas en cuanto a calidad, por este motivo se presenta realizo el presente ensayo, donde se utilizaron dosis altas y bajas de auxinas, giberelinas y citoquininas para estimular los racimos florales de las plantas de arándanos (*Vaccinium corymbosum L.*) en la parroquia Atahualpa Cantón Pedernales.

1.3 MARCO TEÓRICO

1.3.1 Antecedentes

Menciona García et al. (2024) en un estudio llevado a cabo en México sobre el arándano azul *cv. Biloxi*, donde se utilizaron ara fumigación foliar biorreguladores y bioestimulantes en un invernadero, evaluando su impacto en la brotación de yemas axilares, así como en el crecimiento y la producción. Se utilizaron cinco tratamientos con biorreguladores (tidiazurón, ácido giberélico y ácido glutámico) y bioestimulantes (extracto de alga marina Ascophyllum nodosum). El tratamiento que combinó TDZ (25 mg L-1) + AG3 (12. 5 mg L-1) + GLU (75 mg L-1) logró incrementar la brotación de yemas en un 46%, el rendimiento de frutos en un 28%, el tamaño de los frutos en un 13% y el peso de cada fruto en un 24%. Los tratamientos que incluyeron extractos de Ascophyllum nodosum (2 ml L-1) favorecieron la elongación de los brotes en las plantas de arándano y la aparición de nuevas cañas. Los biorreguladores ayudaron a obtener un mayor rendimiento, mientras que la aplicación de bioestimulantes no resultó en un aumento en la producción.

Menciona Fichet, (2025) las auxinas, entre ellas el ácido indolacético (IAA), favorecen la elongación celular y el desarrollo radicular, además de suprimir el desarrollo de yemas

laterales. Las citoquininas, en cambio, estimulan la división celular y la brotación lateral. Esta interacción antagónica es determinante en la formación de la estructura del cultivo. El Dr. Fichet indicó que, en el arándano, es posible inducir la brotación lateral mediante despuntes, al eliminar la fuente principal de auxinas y finalmente generar un cambio en la relación auxinas/citoquinas, favoreciendo que estas últimas permitan la brotación lateral de yemas latentes.

El Ministerio de Agricultura y Ganadería, (2022) en Ecuador, la producción de arándanos se concentra en las provincias de Imbabura, El Oro, Cotopaxi, Cañar, Pichincha y Tungurahua, en Santa Elena, Loja y Manabí se realizan ensayos y pruebas con múltiples variedades. Actualmente, en estas provincias se destinan 50 hectáreas para la producción de esta fruta y está cifra está en constante aumento por el auge de la demanda internacional. Las empresas pioneras en la producción del arándano se encuentran en Tungurahua, las mismas que actualmente se sitúan en el sector de Pelileo con 10 hectáreas pertenecientes a Nobis Fruit y con 4,5 hectáreas para Corp Cosecha. El Ministerio de Agricultura y Ganadería (MAG) fomenta la formación de asociaciones para satisfacer la demanda nacional como internacional, aprovechando el potencial para exportar frutas a 35 países.

Contreras, (2010) llevó a cabo una investigación en los campos experimentales en la comunidad de Mulchen, Chile, con la intención de analizar el impacto de diferentes concentraciones de citoquinina (CPPU). Utilizó un diseño experimental de bloques completamente al azar con cuatro tratamientos: un grupo de control, y tratamientos con 5 ppm, 10 ppm y 15 ppm de citoquinina (CPPU), aplicados durante las fases fenológicas y con tres repeticiones. Las variables que se examinaron incluyen el rendimiento total por planta,

el peso promedio de los frutos, el diámetro ecuatorial promedio, el diámetro longitudinal promedio, la densidad de sólidos solubles y la firmeza del fruto. Se determinó que las dosis superiores a 10 ppm en arándano alto resultan en una mejora en la calidad del fruto; por ejemplo, a 15 ppm, el peso promedio de los frutos fue de 1,23 g en comparación con el grupo de control. En cuanto al diámetro ecuatorial, los resultados más altos fueron de 14,3 mm y 14,1 mm, mientras que en la firmeza del fruto, el tratamiento 9 destacó con un 92,03 %.

1.4 Bases Teóricas

1.4.1 Arándano (Vaccinium corymbosum L.)

Planta que produce arándanos es un arbusto que comienza a dar frutos dos años después de ser plantado. La recolección de arándanos se realiza manualmente, eligiendo los frutos en su punto óptimo de madurez. En una buena temporada, cada arbusto puede generar hasta ocho cosechas. Durante el invierno, la planta entra en un estado de descanso vegetativo y vuelve a iniciar su ciclo en primavera. En regiones tropicales, donde el clima no varía durante el año, la producción puede ser continua (Calvo, 2019).

1.4.2 Requisitos agroclimáticos para producir de arándanos

Menciona (Calvo, 2019) el cultivo de arándano requiere de determinadas condiciones agroclimáticas que le permiten un correcto desarrollo a continuación se describen estas condiciones:

Los arándanos son muy vulnerables a los vientos fuertes. Gracias al viento, los frutos
y las flores pueden caerse prematuramente. Por eso, si decides cultivar arándanos, es
aconsejable que protejas tu terreno del viento, especialmente si es frecuente en tu
área.

- Esta planta requiere suelos ácidos, con un pH que oscila entre 4 y 5. Por ende, en suelos que son neutros o alcalinos, será necesario realizar un tratamiento que garantice el éxito del cultivo. El pino es un buen compañero para el arándano, ya que crece bien junto a él y puedes usar sus restos como mantillo.
- es posible, con un buen contenido de materia orgánica. Para prevenir el encharcamiento, el cultivo en surcos evita la acumulación de agua en la base.
- Las aves también representan un problema para el cultivo de arándanos. Se comen los frutos y generan grandes pérdidas. A menudo se utilizan dispositivos para ahuyentarlas o redes protectoras, que, aunque incrementan el costo, son necesarias para evitar daños considerables.

1.4.3 Taxonomía

Tabla 1. Taxonomìa del arándano Vaccinium corymbosum L

1 abia 1. 1 axonomia dei arandano y accinium c	or ymoo.
Plantas Reino Plantae	
Filo Tracheophyta	
Subfilo Angiospermae	
Clase Magnoliopsida	
Orden Ericales	
Familia Ericaceae	
Subfamilia Vaccinioideae	
Tribu Vaccinieae	
Género Vaccinium	
Sección Cyanococcus	

Fuente: (Montoya, 2025) Arándano Azul (Vaccinium corymbosum)

1.4.4 Morfología del arándano

Menciona Bustillo, (2018) el aràndano (*Vaccinium corymbosum*) pertenece a la familia de las *Ericaceas*, caracterizado como un arbusto de tamaño pequeño, a continuación, se describe su morfología:

Raíz: Las raíces del blueberry generalmente se localizan en los primeros 40 centímetros, siendo delgadas y superficiales. Carecen de un gran número de pelos absorbentes, lo que hace que las raíces más jóvenes se encarguen de la absorción. Por esta forma de absorción, en ciertos casos se puede observar una falta de nutrientes. Se sugiere introducir hongos simbióticos que se unan a las raíces para mejorar la eficacia en la nutrición y en la aplicación de fertilizantes para la planta.

Hojas: Las hojas tienen una forma simple y se disponen de forma alterna a lo largo de la rama, con una longitud que varía entre 5 y 7 centímetros. Su color principal es un verde pálido, aunque algunas variedades y ciertas épocas del año (como en otoño) les pueden dar un matiz rojizo.

Flores: Las flores aparecen en grupos, generalmente axilares, de entre 6 a 10 por cada yema. La corola es en forma de campana, de color blanco con matices rosas, compuesta por 4 a 5 pétalos, y cuenta con 8 a 10 estambres que se extienden en tubos en la parte superior, con una abertura sencilla en la punta. Cuando la planta alcanza su nivel máximo de madurez, el polen se libera. Presentan una corola verde y el estigma se destaca.

Fruto: Se trata de una baya redonda cuyo tamaño y color pueden variar según la variedad. En general, su tamaño ronda entre 1,5 y 3 centímetros de diámetro, con un peso que puede ser de 0,5 a 4,0 gramos, y contiene entre 20 y 100 semillas en su interior, dependiendo del tamaño del fruto. A medida que avanza el proceso de maduración, el color del fruto cambia, llegando a tonos como el rojo y morado al terminar su madurez. Además, se destacan por tener secreciones cerosas que les otorgan un atractivo visual para los consumidores.

1.4.5 Plan de manejo y Fertilización del arándano

El cultivo de arándano implica una inversión inicial considerable, ya que sus característic as requieren una adecuada preparación del suelo en profundidad (los mejores resultados se o btienen en suelos secos), instalación de riego por goteo, suelos ligeros y uso de mulch. Ade más, hay que tener en cuenta el costo de las plantas, que deben ser saludables y certificadas. Se sugiere crear camellones de 30 a 50 cm de altura y 1 m de ancho, y mejorar su textura y e structura mediante la adición de aserrín de pino grueso, corteza de pino, capotillo de arroz o virutas con cantidades que oscilan entre 200 y 800 m³/ha. También es posible utilizar comp ost u otras enmiendas orgánicas que permitan a las raíces expandirse con libertad por la sup erficie, llenando los espacios con raíces. Cada tres años es necesario reestructurar el camelló n, realizando un rastraje entre las hileras y acumulando tierra de mejor calidad alrededor de las raíces (González et al., 2017).

Para realizar el trasplante, es necesario efectuar excavaciones de alrededor de 40 x 40 x 4 0 cm. Después de un trasplante exitoso, es esencial contar con productos desinfectantes para el suelo, incluyendo insecticidas, fungicidas y abonos. Durante el trasplante, hay que manip ular las raíces en desarrollo con mucho cuidado para evitar lesiones que podrían ocasionar r eacciones negativas en el nuevo ambiente. Es crucial regar adecuadamente durante los tres d ías siguientes al trasplante. Además, ha habido un cambio notable en la densidad de la plant

ación. Hace 25 años, la densidad más habitual era de 2200 plántulas por hectárea. En la actu alidad, las plantaciones se están llevando a cabo a una densidad que oscila entre 4400 y 600 0 plántulas por hectárea, dependiendo de la variedad (Avila, 2023).

La nutrición es un aspecto crucial en el cultivo de arándanos. En un manejo convenciona l, se puede usar cualquier tipo de fertilizante en las dosis y momentos apropiados. Por otro l ado, en el manejo orgánico, se deben utilizar fuentes de fertilización permitidas, las cuales d eben aplicarse en los momentos correctos según la velocidad en que liberan nutrientes. Muc has de estas fuentes, como el compost y los abonos verdes, requieren actividad biológica en el suelo, un proceso que puede llevar tiempo, para liberar importantes nutrientes como nitró geno (N), fósforo (P) y azufre (S). Nutrientes como potasio (K), calcio (Ca) y magnesio (M g) se liberan de manera más rápida (Hirzel, 2017).

Para las plantas de arándanos, el análisis del fertilizante (10-10-10, 10-5-5 o 7-0-7) no es tan importante como el tipo de nutrientes aplicados. Las plantas de arándanos no necesitan f ertilizantes con nitrato. Utilice fuentes amoniacales de nitrógeno (N), como sulfato de amon io, nitrato de amonio o urea, y evite compuestos clorados como el muriato de potasio (KCl) y el cloruro de magnesio (MgCl₂). Existen mezclas de fertilizantes para arándanos con nutri entes específicos para plantas que prefieren suelos ácidos. Analice el tejido foliar anualment e y las muestras de suelo al menos cada tres años para obtener información sobre la eficacia de su programa de fertilización (Smith, 2019).

1.4.6 Hormonas en el cultivo de arándano

La interacción entre hormonas vegetales y azúcares como mecanismo clave en el control del desarrollo del cultivo de arándanos. Los órganos como hojas jóvenes, brotes en activo cr ecimiento y frutos en formación consumen grandes cantidades de fotoasimilados debido a s u alta actividad metabólica. En el caso del fruto, las señales fitohormonales generadas por el embrión activan genes que codifican enzimas como la sacarosa sintasa e invertasas. Estas en zimas transforman la sacarosa en glucosa y fructosa, permitiendo su aprovechamiento por la s células de los órganos en desarrollo, no solo importa la cantidad de hormonas vegetales pr esente en la planta, sino también la sensibilidad del tejido donde ellas se encuentran. Las raí ces responden a concentraciones muy bajas de auxinas, mientras que los tallos requieren niv eles más altos para inducir la elongación celular, una fitohormona promotora puede comenz ar a inhibir el proceso que antes estimulaba a menores concentraciones (Fichet, 2025).

Aplicación estratégica de bioestimulantes en el cultivo de arándano permite mitigar los e fectos del estrés abiótico y fisiológico, activando mecanismos de defensa, recuperación y de sarrollo, frente a problemas como de acuerdo a (Ortiz, 2025):

- ✓ **Daños físicos:** viento, granizo, lluvias intensas, heladas, enfermedades.
- ✓ **Estrés térmico:** frío intenso o cambios bruscos de temperatura
- ✓ **Déficit de luz:** baja fotosíntesis prolongada
- ✓ **Fitotoxicidades:** por agroquímicos o metales pesados.
- ✓ Trasplantes exigentes o mal ejecutados.
- ✓ Estrés hídrico o salino.
- ✓ **Etapas críticas:** floración, cuaja, engorde o maduración de frutos.

1.4.7 Auxinas

Son fitohormonas que desempeñan roles específicos en varios procesos de las plantas. Actúan principalmente a nivel celular, donde pueden influir y participar en la división, alargamiento y especialización de las células. Estas hormonas están distribuidas de manera uniforme en la mayoría de las células y tejidos vegetales, lo que les permite intervenir en la diferenciación tanto de células individuales como de grupos, así como en los distintos tejidos vegetales. Debido a sus funciones, se les considera morfógeno que pueden estimular la diferenciación celular en órganos como raíces, tallos y hojas, y también contribuir a su formación (Alcantara et al., 2019).

Alcantara et al., (2019) tambien menciona que una de las características más importantes de las auxinas se encuentran su habilidad para fomentar la formación y alargamiento de tallos en las plantas, incentivar la división celular en cultivos de callos (un conjunto de células no diferenciadas causadas por un exceso de auxina en el entorno vegetal) en combinación con citoquininas, y su capacidad de provocar el crecimiento de raíces adventicias en los tejidos de hojas y tallos que han sido cortados. El ácido 3-indol-acético (AIA), que es la auxina más común en el reino vegetal, se encuentra entre las auxinas más reconocidas, mientras que existen otras auxinas sintéticas como el ácido indol-butírico (IBA), el ácido 2,4-diclorofenoxiacético (2,4-D) y el ácido α-naftalenacético (NAA).

1.4.8 Giberelinas

Las giberelinas, que también se conocen como ácidos giberélico, fueron inicialmente descubiertas en la década de 1930, cuando algunos científicos comenzaron a investigar ciertas enfermedades en plantas asociadas con el arroz. En este análisis, se detectó un hongo

llamado *Gibberella fugikuroi* como responsable de la enfermedad conocida como "bakanae" en las plántulas de arroz. Esta dolencia estaba relacionada con la sobreproducción de la fitohormona giberelina A, que era generada por el hongo y ocasionaba un crecimiento excesivo en la parte superior de la planta, así como un desarrollo esbelto del vástago. Con el paso del tiempo, varios investigadores fueron capaces de aislar y clasificar diversas giberelinas a partir de la filtración y purificación de los metabolitos de estos hongos, logrando identificar tres tipos: GA1, GA2 y GA3 (Alcantara et al., 2019).

1.4.9 Citoquininas

Las citoquininas son un grupo de fitohormonas que provienen de la adenina y que se identificaron por primera vez entre 1940 y 1950. Estas sustancias pueden iniciar y mantener el crecimiento de tejidos madre al ser aplicadas en pequeñas dosis a plantas. Con el tiempo, se investigaron otras sustancias que pudieran tener efectos similares, y en ese sentido, el agua de coco se destacó como una de las primeras citoquininas aisladas y reconocidas, conocida como zeatina. Estas hormonas tienen la capacidad de promover y acelerar la división celular y el crecimiento, suelen facilitar la formación y el alargamiento de raíces, pueden desencadenar la senescencia en las hojas, fomentan el desarrollo de las plantas en respuesta a la luz y aumentan la producción de brotes en los vegetales (Alcantara et al., 2019).

CAPITULO II

2. METODOLOGÌA

2.1 Métodos de investigación

En el presente trabajo de investigación teòrico-practico, se aplicaron métodos y conocimientos que permitieron mediante la utilización de una metodología experimental — cuantitativa para la realización del análisis de datos a través de programa estadístico de forma que se genere una mayor confianza sobre las variables de respuesta en estudio y resolver la problemática planteada.

2.1.1 Localización

La presente investigación se realizó en la parroquia Atahualpa ubicada geográficamente al sur de la cabecera cantonal de Pedernales, a una altura de 60 m.s.n.m. y una superficie de 169,15 Km² (GAD Atahualpa, 2025).

2.1.2 Ubicación geográfica

Parroquia Atahualpa Cantón pedernales a 0°01'33"S 79°58'16"W, a 66,16 metros de elevación.

Gràfico 1. Ubicación del ensayo

Fuente: (Google Earth, 2020)

2.1.3 Duración

La investigación se desarrolló desde el 28 de junio de 2024 hasta el 17 de febrero de 2025 con una duración de 8 meses.

2.1.4 Características climáticas

Tabla 2. Características climáticas de la parroquia Atahualpa

Precipitación me	edio anual: 1000–2000 mm/año
Temperat	tura media anual: 34°C
Humedad re	elativa anual: 73 % - 83%
Heliofanìa	anual: 1070,3 (horas/sol)
Fuente: (Гоарапtа, 2019)

2.2 MÉTODO Y TÉCNICA DE LA INVESTIGACIÓN

2.2.1 Método de investigación

El presente trabajo es de carácter experimental de campo, en la investigación se aplicaron conocimientos, métodos como la observación directa y diferentes técnicas para la obtención de resultados, alternando diferentes números de tratamientos y componentes para un mayor alcance investigativo, los datos obtenidos de las variables en estudio fueron evaluadas a través del software estadístico INFOSTAT, mediante análisis de varianza (ADEVA) con prueba de Tukey (p<0,05) para la separación de medias.

2.3 Técnicas de investigación

Las técnicas que se utilizaron en la presente investigación se establecen bajo el criterio científico y de carácter experimental, debido a que la investigación es de tipo experimental-observacional, descriptiva y cuantitativa, se evaluó las variables de respuesta: (Número de frutos por planta, diámetro de arándanos, número de ramificaciones, peso en gramo del fruto, número de flores), para la obtención de datos por medio de la parte cuantitativa se utilizó el programa INFOSTAT.

2.4 Tipo y diseño de la investigación

La presente investigación es de carácter experimental de campo, cualitativa y cuantitativa donde el análisis de información se realizó por medio de revisiones de trabajos experimental como ensayos, libros, artículos de revistas e informes de carácter científico donde se obtuvo información relevante referente al tema de estudio y los datos numéricos se recopilaron y

posteriormente fueron tabulados y analizados por medio del software estadístico INFOSTAT, por medio de un modelo lineal.

2.4.1 Diseño de la investigación

Se utilizó un diseño de bloques completamente al azar (DBCA) modelo lineal general, con un solo factor en estudio, dando como resultado dos tratamientos con aplicación de hormonas estimulantes y un testigo 0 sin la aplicación de las fitohormonas (auxinas, giberelinas y citoquininas), con dos únicas aplicaciones y tres repeticiones (R1,R2,R3) y tres bloques, para las comparaciones de rangos múltiples de promedios se utilizó la prueba de Tukey con un nivel de significancia $\alpha = 0.05$.

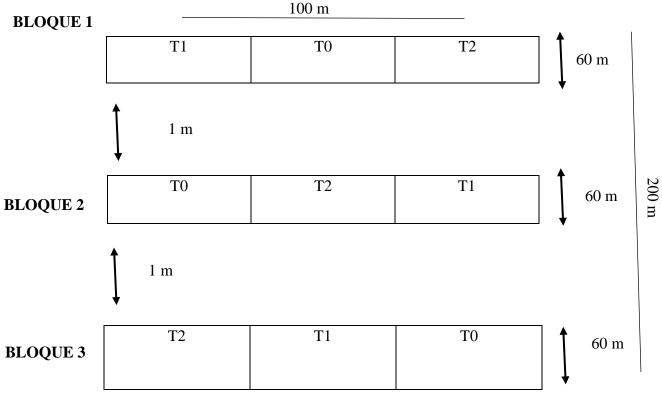

2.4.2 Estructura de los tratamientos

Tabla 3. Estructura de los tratamientos

Tratamientos	Descripción	Número de
		aplicaciones
T1	Auxina 50-100 ppm +	1
	Giberelina 5-10 ppm +	
	Citoquinina 1-3 ppm	
T2	Auxina 200-400 ppm +	1
	Giberelina 50-100 ppm +	
	Citoquinina 10-20 ppm	
ТО	Sin aplicación	

Elaborado por Autor (Pilozo, 2025)

2.5 DISEÑO Y UNIDAD EXPERIMENTAL

2.5.1 Características generales de la parcela experimental

- ✓ Número de hilera por tratamiento: 3
- ✓ Número de plantas por hilera: 40
- ✓ Distancia entre hileras: 2 m
- ✓ Distancia entre plantas: 0,5 m
- ✓ Ancho de la unidad experimental 33 m
- ✓ Largo de la unidad experimental 60 m
- \checkmark Área de la unidad experimental 1800 m²

2.5.2 Características del bloque experimental

- ✓ Número de tratamientos por bloque: 03
- ✓ Número de bloques: 03

✓ Ancho: 100 m

✓ Largo: 200 m

✓ Ancho de Bloque: 36 m

✓ Área total del bloque: 20.000 m²

2.5.3 Características del área experimental

✓ Ancho del campo experimental: 100 m

✓ Largo del campo experimental: 200 m

✓ Área experimental total: 20.000 m²

2.5.4 Análisis de Variancia

Tabla 4. El esquema del Análisis de la Varianza se indica a continuación.

FUENTE DE		
VARIACIÓN	FORMULA	G.L.
Tratamientos	(t-1)	2
Repetición	(r-1)	3
Error	(r-1) (t-1)	10
Total	r.t-1	17
r = número de repeticione	es	Donde; $r = 3$
t = número de tratamiento	s	t = 3

2.5.5 Modelo aditivo lineal

$$Yij = \mu + \beta j + \tau i + \epsilon ij$$

Yij = Resultado de una unidad experimental

 $\mu = Media$ o promedio general

 $\beta j = Efecto de bloques$

 τi = Efecto de tratamientos

Eij = Error unidad experimental

2.6 Materiales y Equipos

En la presente investigación se utilizaron materiales que permitieron la realización de las labores en campo y la aplicación de los tratamientos descritos a continuación:

Bomba de mochila

Gramera

Recipiente plàstico de 250 ml

Libreta de apuntes

Botas de caucho

Calibrador

Elaborado por Autor (Pilozo, 2025)

2.7 Variables de respuesta

2.7.1 Variable independiente

Utilización de hormonas para estimular racimos florales en arándano (Vaccinium corymbosum L.)

2.7.2 Variables dependientes

En el presente trabajo de investigación se midieron las siguientes variables las cuales fueron: Número de frutos por planta, diámetro de arándanos, número de ramificaciones, peso en gramo del fruto, número de flores.

2.8 Manejo del experimento

2.8.1 Número de frutos por planta

Se realizó la evaluación de veinte plantones de arándanos elegidas completamente al azar de la hilera central, se contó el número de frutos por planta cuando estos alcanzaron su madurez y se realizaron dos tomas de datos.

2.8.2 Peso de fruto por planta

De los veinte plantones seleccionados al azar, se registró el peso de cada fruto cosechado por planta, en cada una de las unidades experimentales en estudio.

2.8.3 Diámetro promedio

Se evaluaron veinte frutos cosechados al azar por cada uno de los tratamientos en cada bloque y unidad experimental utilizando un calibrador vernier de forma manual.

2.8.1 Número de ramificaciones y Número de flores

El conteo de número de flores y número de frutos se lo realizó de manera manual, para ello se seleccionó veinte plantas al azar, posterior al conteo se registraron los datos y se realizó Analsisi estadístico para medir la normalidad de los datos.

CAPITULO III

3. RESULTADOS Y DISCUSIÓN

3.1 Resultado de métodos y técnicas de investigación

3.1.1 Comprobación de hipótesis o contestación a las preguntas de investigación

Después de realizar el respectivo análisis de datos estadísticos a través de un diseño de bloques completamente al azar (DBCA) modelo lineal general, se acepta la hipótesis alternativa, donde se menciona que al menos uno de los tratamientos en estudio presento significancia estadística sobre la utilización de hormonas (auxinas, giberelinas y citoquininas) para estimular racimos florales en arándano (*Vaccinium corymbosum L.*) presentaron efectos positivos en la producción de arándanos. después de realizar los respectivos análisis en el programa INFOSTAT con un modelo lineal general con prueba de Tukey al 5%.

3.2 Comparar la eficiencia de las hormonas utilizadas en la estimulación de racimos florales en arándano (*Vaccinium corymbosum L.*)

3.2.1 Modelo lineal general: N DE RAMIFICACIONES vs. FITOHORMONAS; BLOQUES

Tabla 6. Información del factor

Factor	Tipo	Niveles	Valores	
FITOHORMONAS	Fijo	3	Dosis alta: AIA 200-400 ppm GA 50-100 ppm	
			CK 10-20 ppm; Dosis	
			baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3	
			ppm; TESTIGO 0	
BLOQUES	Fijo	10	1; 2; 3; 4; 5; 6; 7; 8; 9; 10	

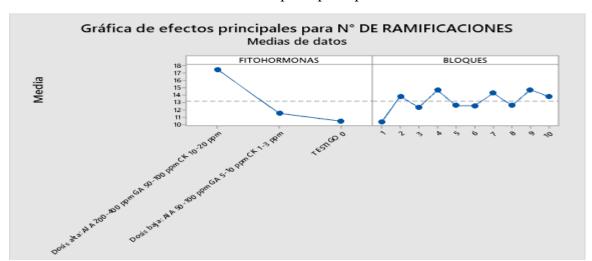
Tabla 6. Muestra la información del factor en estudio tratamientos (Dosis alta: AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm; Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm; y TESTIGO 0) y el conjunto de bloques dentro del ensayo experimental.

Tabla 7. Análisis de Varianza

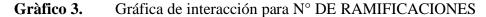
Fuente	GL	SC MC		Valor	Valor p
		Ajust.	Ajust.	F	
FITOHORMONAS	2	284,37	142,183	20,75	0,000
BLOQUES	9	49,05	5,450	0,80	0,625
Error	18	123,34	6,852		
Total	29	456,75			

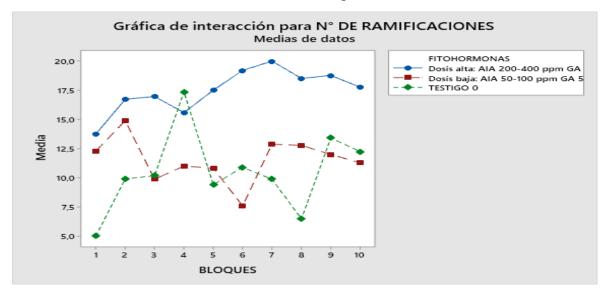
El análisis de varianza muestra que existe una diferencia altamente significativa entre los tratamientos aplicados (p= 0,000) indicando que los tratamientos (AIA, GA y CK) influyen en los resultados. A diferencia de los bloques donde no se presentaron diferencias significativas (p= 0,625) lo que sugiere uniformidad en los valores obtenidos.

3.2.2 Comparaciones para N DE RAMIFICACIONES


Tabla 8. Comparaciones por parejas de Tukey: FITOHORMONAS

FITOHORMONAS	N	Media	Agrup	ación
Dosis alta: AIA 200-400 ppm GA 50-100 ppm CK	10	17,482	A	
10-20 ppm				
Dosis baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3	10	11,547		В
ppm				
TESTIGO 0	10	10,485		В


De acuerdo a la prueba de Tukey realizada al (95% de confianza), las dosis altas (AIA 200-400 ppm, GA 50-100, ppm CK 10-20 ppm) son significativamente diferentes ya que pertenecen al grupo A, a diferencia de las dosis bajas (Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm) que pertenecen al grupo B al igual que el testigo 0. Esto indica que las


dosis altas presentan una mayor respuesta al ser aplicadas al cultivo de forma estadísticamente significativa.

Nota. Las medias que no comparten una letra son significativamente diferentes.

Gráfico 2. Gráfica de efectos principales para N° DE RAMIFICACIONES

De acuerdo a los resultados presentados en la gráfica de efectos principales para número de ramificaciones se obtuvo que el tratamiento de dosis alta de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 pp, por lo que existe una eficiencia de las hormonas utilizadas en la

estimulación de ramificaciones en arándano (*Vaccinium corymbosum L.*), en los bloques 2,4,7 y 9 respectivamente, en las interacciones se presenta que existe una relación de entre las dosis altas de las fitohormonas (AIA, GA y CK) y los bloques.

Tabla 9. Resumen del modelo

	S	R-cuad.	R-cuad. (ajustado)	R-cuad. (pred)
ľ	2,61763	73,00%	56,50%	24,99%

Tabla 10. Ecuación de regresión

N° DE	=	13,171 + 4,31	1 FITOHORM	ONAS_Dosis alta: AL	A 200-400
RAMIFICACIONES		ppm	GA	50-100	ppm
		CK 10-20 ppn	n - 1,624 FITC	HORMONAS_Dosis	baja: AIA
		50-100	ppm	GA	5-10
		ppm CK 1-3	ppm - 2,686 F	ITOHORMONAS_TE	ESTIGO 0
		- 2,82 BLOQU	JES_1		
		+ 0,68 BLOQ	UES_2	- 0,82 BL0	OQUES_3
		+ 1,49 BLOQ	UES_4	- 0,59 BL0	OQUES_5
		- 0,60 BLOQU	JES_6	+ 1,09 BL0	OQUES_7
		- 0,57 BLOQU	JES_8	+ 1,56 BL0	OQUES_9
		+ 0,60 BLOQ	UES_10		

Tabla 11. Ajustes y diagnósticos para observaciones poco comunes

Obs	N° de ramificaciones	Ajuste	Resid	Resid est.	
24	17,38	11,97	5,41	2,67	R

Residuo grande R

En las Tabla 11 de ajuste para las observaciones para la variable número de ramificaciones por plantas indican que la media por plantas es de 13,171 número de ramificaciones por planta. Como resultado de los tratamientos aplicados se obtiene que al realizar las aplicaciones de dosis altas (AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm), permiten

un incremento de frutos por plantas de 4,31%, pero si se aplica dosis baja, se reduce el número de ramificaciones en 2,62. Por lo que de acuerdo a los resultados se sugiere la aplicación de dosis altas de fitohormonas.

3.3 Determinar el efecto de las hormonas en la producción de los frutos de Arándanos (*Vaccinium corymbosum L.*)

3.3.1 Modelo lineal general: Frutos por planta vs. FITOHORMONAS; BLOQUE

Tabla 12. Información del factor

Factor	Tipo	Niveles	Valores		
FITOHORMONAS	Fijo	3	Dosis alta: AIA 200-400 ppm GA 50-100 ppm CK		
			10-20 ppm; Dosis		
			baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3 ppm;		
			TESTIGO 0		
BLOQUES	Fijo	10	1; 2; 3; 4; 5; 6; 7; 8; 9; 10		

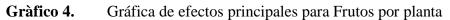
Tabla 12. Muestra la información del factor en estudio tratamientos (Dosis alta: AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm; Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm; y TESTIGO 0) y el conjunto de bloques dentro del ensayo experimental.

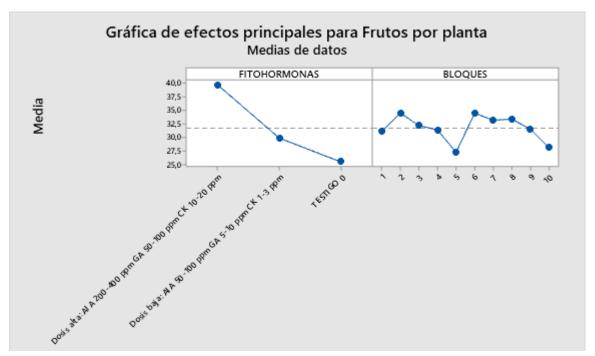
Tabla 13. Análisis de Varianza

Fuente	GL	SC	MC	Valor	Valor p
		Ajust.	Ajust.	F	
FITOHORMONAS	2	1065,0	532,50	17,43	0,000
BLOQUES	9	160,3	17,81	0,58	0,794

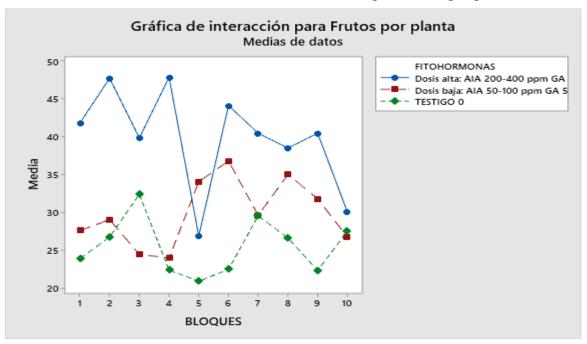
Error	18	549,9	30,55	
Total	29	1775,3		

El análisis de varianza muestra que existe una diferencia altamente significativa entre los tratamientos aplicados (p= 0,000) indicando que los tratamientos a base de fitohormonas (AIA, GA y CK) influyen en los resultados. A diferencia de los bloques donde no se presentaron diferencias significativas (p= 0,794) lo que sugiere uniformidad en los valores obtenidos.


3.3.2 Comparaciones para Frutos por planta


Tabla 14. Comparaciones por parejas de Tukey: FITOHORMONAS

FITOHORMONAS	N	Media	Agrup	ación
Dosis alta: AIA 200-400 ppm GA 50-100 ppm	10	39,757	Α	
CK 10-20 ppm				
Dosis baja: AIA 50-100 ppm GA 5-10 ppm CK	10	29,919		В
1-3 ppm				
TESTIGO 0	10	25,502		В


De acuerdo a la prueba de Tukey realizada al (95% de confianza), las dosis altas (AIA 200-400 ppm, GA 50-100, ppm CK 10-20 ppm) son significativamente diferentes ya que pertenecen al grupo A con una media de (39,757) a diferencia de las dosis bajas (Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm) que pertenecen al grupo B con una media de (29,919) al igual que el testigo 0 con una media de (25,502). Esto indica que las dosis altas presentan una mayor respuesta al ser aplicadas al cultivo de forma estadísticamente significativa.

Nota. Las medias que no comparten una letra son significativamente diferentes.

Gráfico 5. Gráfica de interacción para Frutos por planta

De acuerdo a los resultados presentados en la gráfica de efectos principales para frutos por planta se obtuvo que con altas dosis de Ácido Indol-3-Acético (AIA) (200-400 ppm), Giberelina (GA) (50-100 ppm) y Citoquininas (CK) (10-20 pp) aumentan el número de frutos

por planta de arándano (*Vaccinium corymbosum L.*), con mayor eficiencia en los bloques 2, 3, 8, 7 y 8, y que existe una interacción entre las dosis altas de estas fitohormonas y los bloques donde se aplicaron.

Tabla 15. Resumen del modelo

S	R-cuad.	R-cuad. (ajustado)	R-cuad. (pred)
5,52742	69,02%	50,09%	13,95%

Tabla 16. Ecuación de regresión

Frutos	por	=	31,73 +	- 8,03 FITOH	ORMONAS_	Dosis alta: AIA	200-400 ppm
planta			GA	5	0-100	ppm	CK
			10-20 p	opm - 1,81 F	ITOHORMON	NAS_Dosis baja	: AIA 50-100
			ppm	GA	5-10) ppm	CK
			1-3	ppm -	- 6,22 FITOH	ORMONAS_TES	STIGO 0
			- 0,63 B	SLOQUES_1		+ 2,79	BLOQUES_2
			+ 0,49 I	BLOQUES_3	- 0,32 BLO	QUES_4 - 4,42	BLOQUES_5
			+ 2,73 I	BLOQUES_6			
			+ 1,48 I	BLOQUES_7	+ 1,66 BLO	QUES_8 - 0,19	BLOQUES_9
			- 3,60 B	SLOQUES_10)		

Tabla 17. Ajustes y diagnósticos para observaciones poco comunes

Obs	Frutos por planta	Ajuste	Resid	Resid est.	
5	34,06	25,50	8,56	2,00	R

Residuo grande R

En las Tablas 17 de ajuste para las observaciones para la variable frutos por plantas indican que la media por plantas es de 31,73 frutos por planta. Como resultado de los tratamientos aplicados se obtiene que al realizar las aplicaciones de dosis altas (AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm), permiten un incremento de frutos por plantas de 8,03%, pero

si se aplica dosis baja, la producción se reduce en 1,81 frutos. Por lo que de acuerdo a los resultados se sugiere la aplicación de dosis altas de fitohormonas.

3.4 Evaluar el efecto de las hormonas en las características agronómicas de las plantas de Arándanos ($Vaccinium\ corymbosum\ L$.)

3.4.1 Modelo lineal general: N de Flores vs. FITOHORMONAS; BLOQUES

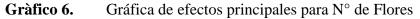
Tabla 18. Información del factor

Factor	Tipo	Niveles	Valores
FITOHORMONAS	Fijo	3	Dosis alta: AIA 200-400 ppm GA 50-100 ppm CK
			ppm; Dosis
			baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3 ppm;
			TESTIGO 0
BLOQUES	Fijo	10	1; 2; 3; 4; 5; 6; 7; 8; 9; 10

Tabla 18. Muestra la informacion del factor en estudio tratamientos (Dosis alta: AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm; Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm; y TESTIGO 0) y el conjunto de bloques dentro del ensayo experimental.

Tabla 19. Análisis de Varianza

Fuente	GL	SC	MC	Valor	Valor
		Ajust.	Ajust.	F	р
FITOHORMONAS	2	854,8	427,39	21,50	0,000
BLOQUES	9	267,8	29,75	1,50	0,223
Error	18	357,7	19,87		
Total	29	1480,3			


El análisis de varianza muestra que existe una diferencia altamente significativa entre los tratamientos aplicados (p= 0,000) indicando que los tratamientos a base de fitohormonas (AIA, GA y CK) influyen en los resultados. Al igual que los bloques donde se presentaron

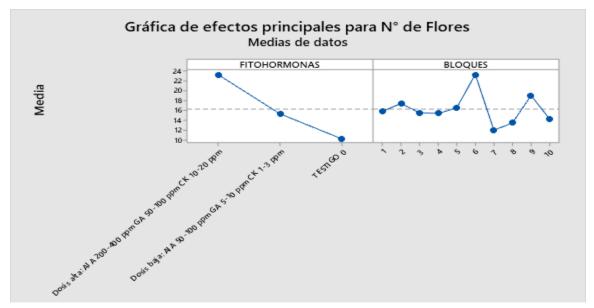
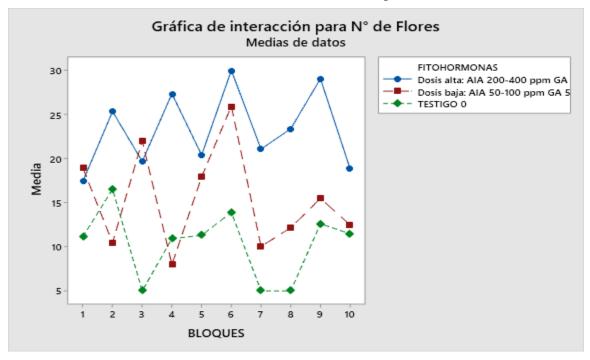

diferencias significativas (p= 0,223) menor que (f=1,50) lo que sugiere uniformidad en los valores obtenidos.

Tabla 20. Comparaciones por parejas de Tukey: FITOHORMONAS


FITOHORMONAS	N	Media	Agrup	ación
Dosis alta: AIA 200-400 ppm GA 50-100 ppm	10	23,256	A	
CK 10-20 ppm				
Dosis baja: AIA 50-100 ppm GA 5-10 ppm CK	10	15,345		В
1-3 ppm				
TESTIGO 0	10	10,285		В

De acuerdo a la prueba de Tukey realizada al (95% de confianza), las dosis altas (AIA 200-400 ppm, GA 50-100, ppm CK 10-20 ppm) son significativamente diferentes ya que pertenecen al grupo A con una media de (23,256) a diferencia de las dosis bajas (Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm) que pertenecen al grupo B con una media de (15,343) al igual que el testigo 0 con una media de (10,285). Esto indica que las dosis altas presentan una mayor respuesta al ser aplicadas al cultivo de forma estadísticamente significativa.

Gráfico 7. Gráfica de interacción para N° de Flores

De acuerdo a los resultados obtenidos a partir de la gráfica de efectos principales para el número de flores, se determinó que el tratamiento con dosis alta de fitohormonas — compuesto por AIA (200–400 ppm), GA₃ (50–100 ppm) y CK (10–20 ppm)— generó un efecto significativamente superior en la inducción floral del arándano (*Vaccinium*

corymbosum L.), en comparación con los demás tratamientos evaluados. Este efecto fue mayor en los bloques 2, 6 y 9. El tratamiento testigo (sin aplicación de fitohormonas) no presentó una respuesta fisiológica favorable en cuanto al número de flores, lo que reafirma la necesidad de estímulo hormonal exógeno para potenciar la floración en este cultivo, especialmente bajo las condiciones del ensayo. Por lo que se sugiere el uso combinado de auxinas, giberelinas y citoquininas en dosis altas para promover la floración y así mejorar el rendimiento del cultivo de arándano.

Tabla 21. Resumen del modelo

S	R-cuad.	R-cuad. (ajustado)	R-cuad. (pred)
4,45805	75,83%	61,07%	32,87%

Tabla 22. Ecuación de regresión

N° de	=	16,295 + 6,96 FITOH	IORMONAS Dosi	s alta: AIA 200-4	00 ppm GA
Flores		50-100	ppm –	CK	10-20
		ppm - 0,95 FITOHOI	RMONAS_Dosis b	paja: AIA 50-100	ppm GA 5-
		10 ppm	CK	1-3	ppm
		- 6,01 FITOHORMO	NAS_TESTIGO	0 - 0,46 Bl	LOQUES_1
		+ 1,14 BLOQUES_2			
		- 0,73 BLOQUES_3	- 0,87 BLOQUI	$ES_4 + 0.24 BI$	LOQUES_5
		+ 6,99 BLOQUES_6			
		- 4,26 BLOQUES_7	- 2,78 BLOQUI	$ES_8 + 2,75 BI$	LOQUES_9
		- 2,03 BLOQUES_10			

Tabla 23. Ajustes y diagnósticos para observaciones poco comunes

Obs	N° de Flores	Ajuste	Resid	Resid est.	
3	22,01	14,61	7,40	2,14	R

Residuo grande R

En las Tablas 23 de ajuste para las observaciones para la variable frutos por plantas indican que la media de número de flores es de 16,925 flores por planta. Como resultado de los tratamientos aplicados se obtiene que al realizar las aplicaciones de dosis altas (AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm), permiten un incremento de frutos por plantas de 6,96%, pero si se aplica dosis baja, la producción se reduce en 0,95% flores por planta. Por lo que de acuerdo a los resultados se sugiere la aplicación de dosis altas de fitohormonas.

3.5 Modelo lineal general: Diámetro Arándanos (cm) vs. FITOHORMONAS; BLOQUES

Tabla 24. Información del factor

Factor	Tipo	Niveles	Valores			
FITOHORMONAS	Fijo	3	Dosis alta: AIA 200-400 ppm GA 50-100 ppm CK			
			10-20 ppm; Dosis			
			baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3 ppm;			
			TESTIGO 0			
BLOQUES	Fijo	10	1; 2; 3; 4; 5; 6; 7; 8; 9; 10			

Tabla 24. Muestra la informacion del factor en estudio tratamientos (Dosis alta: AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm; Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm; y TESTIGO 0) y el conjunto de bloques dentro del ensayo experimental.

Tabla 25. Análisis de Varianza

Fuente	GL	SC	MC	Valor	Valor
		Ajust.	Ajust.	F	p
FITOHORMONAS	2	0,2952	0,14759	7,26	0,005
BLOQUES	9	0,2132	0,02369	1,17	0,375

Error	17	0,3456	0,02033	
Total	28	0,8523		

El análisis de varianza muestra que existe una diferencia altamente significativa entre los tratamientos aplicados (p= 0,005) indicando que los tratamientos a base de fitohormonas (AIA, GA y CK) influyen en los resultados. Al igual que los bloques donde se presentaron diferencias significativas (p= 0,375) menor que (f=1,17) lo que sugiere uniformidad en los valores obtenidos.

3.5.1 Comparaciones para Diámetro Arándanos (cm)

Tabla 26. Comparaciones por parejas de Tukey: FITOHORMONAS

FITOHORMONAS	N	Media	Agrup	ación
Dosis baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3	10	1,59600	A	
ppm				
Dosis alta: AIA 200-400 ppm GA 50-100 ppm CK	9	1,55867	A	
10-20 ppm				
TESTIGO 0		1,36800		В

De acuerdo a la prueba de Tukey realizada al (95% de confianza), las dosis altas (AIA 200-400 ppm, GA 50-100, ppm CK 10-20 ppm) son significativamente diferentes ya que pertenecen al grupo A con una media de (1,59600) al igual que las dosis bajas (Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm) pertenecen al grupo A con una media de (1,55867) a diferencia del testigo 0 con una media de (1,36800). Esto indica que tanto las dosis altas como dosis bajas presentan una mayor respuesta al ser aplicadas al cultivo de forma estadísticamente significativa.

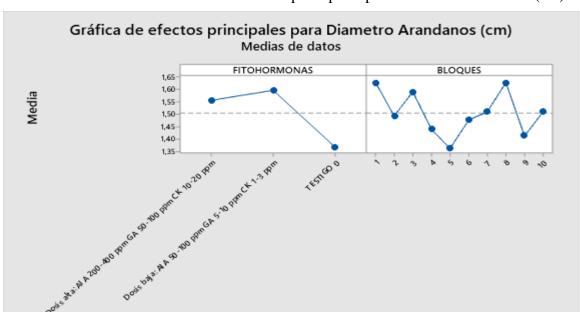
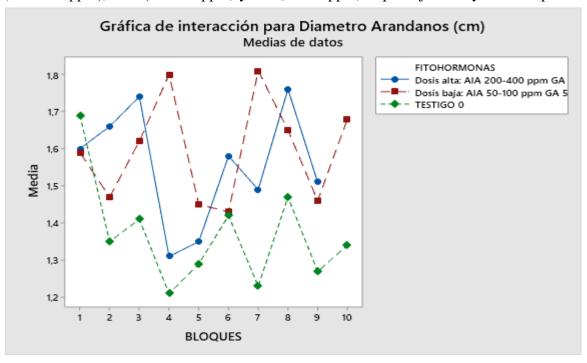



Gráfico 8. Gráfica de efectos principales para Diámetro Arándanos (cm)

Gráfico 9. Gráfica de interacción para Diámetro Arándanos (cm)

De acuerdo a los resultados obtenidos en la gráfica de efectos principales para el diámetro de fruto, se evidenció que la aplicación del tratamiento con dosis alta de fitohormonas —AIA (200–400 ppm), GA₃ (50–100 ppm) y CK (10–20 ppm)— produjo el mayor efecto positivo

sobre el diámetro del fruto de arándano (*Vaccinium corymbosum L.*), en comparación con los demás tratamientos. Este efecto fue notable en los bloques 1, 3 y 8, lo que sugiere la existencia de interacciones significativas entre la dosis alta de fitohormonas y las condiciones específicas de dichos bloques. La dosis baja de fitohormonas —AIA (50–100 ppm), GA₃ (10–20 ppm), CK (1–3 ppm)— no alcanzó los niveles de respuesta observados con la dosis alta, sí generó un incremento en el diámetro de fruto superior al tratamiento testigo (0 ppm).

Tabla 27. Resumen del modelo

S	R-cuad.	R-cuad.	R-cuad.
		(ajustado)	(pred)
0,142584	59,45%	33,21%	0,00%

Tabla 28. Ecuación de regresión

Diámetro arándanos	=	1,5076 +	0,0511 FIT	OHORM	ONAS_Dos	sis alta: A	AIA 200-
(cm)		400	ppr	n	GA		50-100
		ppm CK	10-20 ppi	n + 0.088	84 FITOHO	RMONA	AS_Dosis
		baja:	AI	A	50-100)	ppm
		GA	5-10	ppm	CK	1-3	ppm
		- 0,1396 I	FITOHORN	MONAS_	TESTIGO		0
		+ 0,1191	BLOQUES	5_1	- 0,01	142 BLO	QUES_2
		· '	BLOQUES	_			
		1 '	BLOQUES		- 0,14	142 BLO	QUES_5
		· '	BLOQUES				
		· '	BLOQUES	_	+0,11	191 BLO	QUES_8
		- 0,0942]	BLOQUES	_9			
		+ 0,0280	BLOQUES	5_10			

Tabla 29. Ajustes y diagnósticos para observaciones poco comunes

Obs	Diámetro arándanos (cm)	Ajuste	Resid	Resid est.	
4	1,800	1,528	0,272	2,46	R

Residuo grande R

En las Tabla 29 de ajuste para las observaciones para la variable diámetro del fruto en cm indican que la media por plantas es de 1,5076 cm por fruto. Como resultado de los tratamientos aplicados se obtiene que al realizar las aplicaciones de dosis altas (AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm), permiten un incremento del diámetro en cm por plantas de + 0,0511 %, al aplicar dosis baja, la producción tiende a mejorar también en 0,088 diámetro de fruto en cm. Por lo que de acuerdo a los resultados se sugiere la aplicación de dosis altas y dosis bajas de fitohormonas. A diferencia del testigo 0 donde se presenta una baja del diámetro en cm del fruto de 0,1396 cm.

3.6 Modelo lineal general: Peso arándanos en gr vs. FITOHORMONAS; BLOQUES

Tabla 30. Información del factor

Factor	Tipo	Niveles	Valores
FITOHORMONAS	Fijo	3	Dosis alta: AIA 200-400 ppm GA 50-100 ppm CK
			10-20 ppm; Dosis
			baja: AIA 50-100 ppm GA 5-10 ppm CK 1-3 ppm;
			TESTIGO 0
BLOQUES	Fijo	10	1; 2; 3; 4; 5; 6; 7; 8; 9; 10

Tabla 30. Muestra la informacion del factor en estudio tratamientos (Dosis alta: AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm; Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm; y TESTIGO 0) y el conjunto de bloques dentro del ensayo experimental.

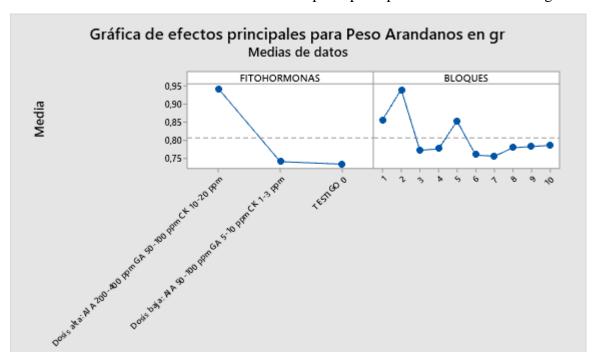
Tabla 31. Análisis de Varianza

Fuente	GL	SC	MC	Valor	Valor
		Ajust.	Ajust.	F	p
FITOHORMONAS	2	0,27905	0,13952	3,14	0,068
BLOQUES	9	0,09240	0,01027	0,23	0,985
Error	18	0,80102	0,04450		

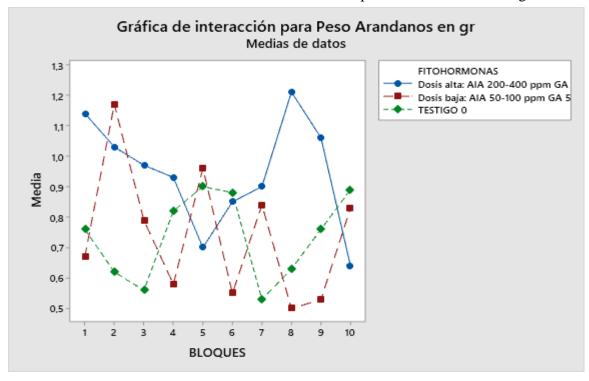
Total 29 1,17247	
------------------	--

El análisis de varianza muestra que existe una diferencia altamente significativa entre los tratamientos aplicados (p= 0,068) indicando que los tratamientos a base de fitohormonas (AIA, GA y CK) influyen en los resultados. Al igual que los bloques donde se presentaron diferencias significativas (p= 0,095) mayor que (f=0,23) lo que sugiere uniformidad en los valores obtenidos.

3.6.1 Comparaciones para Peso Arándanos en gr


Tabla 32. Comparaciones por parejas de Tukey: FITOHORMONAS

FITOHORMONAS	N	Media	Agrupación
Dosis alta: AIA 200-400 ppm GA 50-100 ppm	10	0,943	A
CK 10-20 ppm			
Dosis baja: AIA 50-100 ppm GA 5-10 ppm CK	10	0,742	A
1-3 ppm			
TESTIGO 0	10	0,735	A


De acuerdo a la prueba de Tukey realizada al (95% de confianza), las dosis altas (AIA 200-400 ppm, GA 50-100, ppm CK 10-20 ppm) pertenecen al grupo A con una media de (0,943) al igual que las dosis bajas (Dosis baja: AIA 50-100 ppm, GA 5-10 ppm, CK 1-3 ppm) pertenecen al grupo A con una media de (0,742) y testigo 0 con una media de (0,735). Esto indica que las dosis altas, dosis bajas y testigo presentan uniformidad sobre esta variable.

Nota. Las medias que no comparten una letra son significativamente diferentes.

Gráfico 10. Gráfica de efectos principales para Peso Arándanos en gr

Gráfico 11. Gráfica de interacción para Peso Arándanos en gr

De acuerdo a los resultados presentados en la gráfica de efectos principales para peso de frutos presento resultados en el tratamiento con dosis alta de fitohormonas —ácido

indolacético (AIA, 200–400 ppm), giberelinas (GA₃, 50–100 ppm) y citoquininas (CK, 10–20 ppm)— generó un incremento significativo en el peso promedio de los frutos de arándano, en comparación con los demás tratamientos. Este efecto fue notorio en los bloques 2 y 5, lo cual sugiere la existencia de interacciones relevantes entre el tratamiento hormonal y las condiciones específicas de estos bloques. El tratamiento testigo (sin aplicación de fitohormonas) no presento una respuesta favorable en cuanto al peso de los frutos, mostrando una limitada capacidad del cultivo para alcanzar un desarrollo óptimo sin la intervención hormonal. Aunque el tratamiento con dosis baja de fitohormonas no fue tan efectivo como la dosis alta, también presentó una respuesta superior al testigo.

Tabla 33. Resumen del modelo

S	R-cuad.	R-cuad. (ajustado)	R-cuad. (pred)
0,210953	31,68%	0,00%	0,00%

Tabla 34. Ecuación de regresión

Peso	arándanos	=	0.8067 + 0.1	1363 FITOHORM	IONAS_Dosis alta: A	IA 200-400
en gr			ppm	GA	50-100	ppm
			CK 10-20 p	pm - 0,0647 FITO	OHORMONAS_Dosis	s baja: AIA
			50-100	ppm	GA	5-10
			ppm CK 1-	3 ppm - 0,0717 l	FITOHORMONAS_T	ESTIGO 0
			+ 0,050 BL0	OQUES_1		
			+ 0,133 BL0	OQUES_2	- 0,033 BI	LOQUES_3
			- 0,030 BLC	OQUES_4		
			+ 0,047 BL0	OQUES_5	- 0,047 BI	LOQUES_6
			- 0,050 BLC	OQUES_7		
			- 0,027 BLC	OQUES_8	- 0,023 BI	LOQUES_9
			- 0,020 BLC	OQUES_10		

En la Tabla 34 para las observaciones de la variable peso de arándano en gr indican que la media por plantas es de 0,8067 gr por fruto. Como resultado de los tratamientos aplicados se obtiene que al realizar las aplicaciones de dosis altas (AIA 200-400 ppm, GA 50-100 ppm, CK 10-20 ppm), permiten un incremento del peso en gr del fruto de arándano de +0,1363, al aplicar dosis baja, la producción se reduce en peso en gr del fruto en 0,0647. Por lo que de acuerdo a los resultados se sugiere la aplicación de dosis altas de fitohormonas. En el testigo 0 se presenta una baja del peso en gr del fruto de 0,0717gr.

3.7 Determinar el efecto de las hormonas sobre los costos del cultivo de Arándano ($Vaccinium\ corymbosum\ L$.)

Tabla 35. Costos de Fitohormonas y sus aplicaciones

Fitohormona	Función principal	Costo	Frecuencia	Costo total
		estimado por	recomendada	anual
		aplicación		estimado
Auxinas	Enraizamiento,	\$30 dosis baja	2 - 3 veces al	\$60 - \$150
	desarrollo de raíces	- \$50 dosis alta	año	
Citoquininas	Estimulación de	\$50 dosis baja	2 - 3 veces al	\$100 - \$210
	brotación, división	- \$70 dosis alta	año	
	celular			
Giberelinas	Promoción de	\$40 dosis baja	2 - 3 veces al	\$80 - \$180
	crecimiento	- \$60 dosis alta	año	
	vegetativo,			
	elongación de tallos			

Tabla 36. Costos de materiales y actividades

Descripción	Unidad	Costo Unitario	Costo Total
Aplicación de Auxinas	1 Jornal (mano de	\$20,00	\$20,00
	obra)		
Aplicación de	1 Jornal	\$20,00	\$20,00
Giberelinas			
Aplicación de	1 Jornal	\$20,00	\$20,00
Citoquininas			
Bomba de fumigación	1	\$25,00	\$25,00
Materiales de toma de	1	\$10,00	\$10,00
datos (esferos, libretas)			
Gramera	1	\$9,00	\$9,00
Recipiente	1	\$5,00	\$5,00
Total			\$109,00

3.2 Discusión de los resultados

La aplicación de dosis alta de auxinas, AIA 200-400 ppm, giberelinas GA 50-100 ppm y citoquininas CK 10-20 pp, presentan resultados favorables sobre la estimulación de racimos florales en arándano (*Vaccinium corymbosum L.*), por lo que en el presente ensayo los resultamos muestran que existe una relación de entre las dosis altas de las fitohormonas (AIA, GA y CK) y los bloques. Lo cual concuerda por lo descrito por (García et al., 2024) donde establece que la aplicación de AG₃ aumentó un 46% la brotación de yemas, 28% el rendimiento de fruto, 13% el calibre de fruto y 24% el peso individual del fruto, lo cual

mostró el efecto de los reguladores de crecimiento tipo citocinínico y giberélico en el crecimiento celular.

En el número de ramificaciones se obtuvo una respuesta positiva al aplicar dosis altas de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 pp, por lo que existe una eficiencia de las hormonas utilizadas en la estimulación de ramificaciones en arándano (*Vaccinium corymbosum L.*), contrastado con lo mencionado por (Fichet, 2025) quien en sus investigaciones realizadas ha establecido que las auxinas, las citoquininas y las giberelinas, los brasinosteroides y las estrigolactonas, intervienen principalmente en procesos de crecimiento y desarrollo de los diferentes órganos de una planta de arándanos. También menciona (Expocultivos, 2024) que gracias al aporte de citoquininas se estimula la brotación de nuevas yemas y basales, obteniendo así, plantas mejor estructuradas y con mayor número de tallos productivos. Así mismo, se inducen los procesos de floración y fructificación que van a impactar de forma directa la productividad (Expocultivos, 2024).

En los frutos por planta se obtuvo que el tratamiento de dosis alta de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 pp, por lo que existe una eficiencia de las hormonas utilizadas en la estimulación frutos en arándano (*Vaccinium corymbosum L.*). En el diámetro y peso de fruto las dosis altas de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 pp, presentaron respuesta por lo que existe una eficiencia de las hormonas utilizadas en la estimulación del diámetro de los frutos de arándanos, por lo que se comprueba que el uso de fitohormonas ayuda al desarrollo del cultivo. Contrastando estos con los resultados obtenidos por (Calzado, 2025) donde indica que los mayores diámetros (18.15 y 18.30 mm) fueron favorecidos por la aplicación de la fitohormona citoquinina. Referente al peso promedio del fruto por planta,

el análisis estadístico de la investigación reportó que la aplicación de la citoquinina en plena floración y llenado de fruto favorece el peso de fruto por planta.

En el número de flores se obtuvo que el tratamiento de dosis alta de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 pp, presenta eficiencia de las hormonas utilizadas en la estimulación del número de flores en arándano (*Vaccinium corymbosum L.*), a diferencia del testigo 0 que no presenta ninguna reacción favorable, por lo que se comprueba que el uso de fitohormonas ayuda al desarrollo del cultivo.

4. CONCLUSIONES

- ✓ Al realizar la comparación de las dosis bajas y altas de los tratamientos aplicados sobre la variable de racimos florales se obtuvo que, la aplicación de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 ppm, responden muy bien por lo que influye de manera positiva y permite un correcto desarrollo de las flores y posteriormente la formación de los frutos.
- ✓ La aplicación de auxinas, giberelinas y citoquininas en dosis altas (AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 ppm), permite un correcto desarrollo de los frutos de forma que se mejoran los niveles de producción y el uso de fitohormonas ayuda al desarrollo del cultivo obtenido frutos de calidad, con diámetros y pesos superiores frente al testigo 0 sin aplicación de fitohormonas.
- ✓ Las variables evaluadas dentro del ensayo experimental respondieron efectivamente a la aplicación de dosis altas AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 ppm), obteniendo resultados prometedores en cuanto a diámetro y peso de fruto, racimos florales, numero de flores, entre otras. Los costos generados para la aplicación de las fitohormonas sobre el lote de plantas de arándanos fueron de \$109,00 adicional a ello los valores promedios de los tratamientos esta entre: Auxinas \$50,00 Giberelinas \$60,00 y Citoquininas \$70,00.

5. RECOMENDACIONES

- ✓ Se recomienda que en futuras investigaciones en arándano (*Vaccinium corymbosum L.*) se aplique dosis superiores dosis altas de AIA 200-400 ppm, GA 50-100 ppm y CK 10-20 pp a las establecidas en este ensayo para medir el efecto sobre las variables de número de flores, diámetro de fruto, peso de fruto, número de fruto, numero de racimos florales, entre otras. Para contrastar con los resultados obtenidos en esta investigación.
- ✓ Tomar parámetros físico-químicos del suelo y analizar si estos intervienen sobre la producción de arándanos.
- ✓ Para realizar un análisis de costos a profundidad se recomienda iniciar el cultivo, desde la fase de transplante, riego, mantenimiento, cosecha y postcosecha.

6. BIBLIOGRAFÍA

- Alcantara, C. J., Godoy, J. A., Cortés, J. D., & Mora, R. M. (12 de 2019). Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. *17*(32). Recuperado el 04 de 05 de 2025, de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702019000200109
- Balbontín, C. (23 de 08 de 2023). Fitohormonas mejoran calidad de los arándanos.

 Recuperado el 06 de 06 de 2025, de Portal fruticola:

 https://www.portalfruticola.com/noticias/2023/08/23/fitohormonas-mejorancalidad-de-losarandanos/#:~:text=%C2%BFQu%C3%A9%20caracter%C3%ADsticas%20organol
 %C3%A9pticas%20potencian%20las,se%20pierde%20firmeza%20y%20peso.
- Bustillo, A. A. (2018). El cultivo del arándano (Vaccinium corymbosum) y su proyección en Colombia. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES (UDCA), FACULTAD DE INGENIERIA AGRONOMICA. Recuperado el 04 de 05 de 2025, de https://repository.udca.edu.co/entities/publication/261078c5-c821-4368-ba74-911def8169a8
- Calvo, A. (17 de 12 de 2019). *Plantación de arándanos: rentabilidad y características del cultivo*. Recuperado el 04 de 05 de 2025, de https://blog.agroptima.com/es/blog/plantacion-arandanos-rentabilidad-caracteristicas/
- Contreras, C. M. (2010). EFECTO DE LA APLICACION DE CPPU SOBRE CALIDAD DE FRUTA EN ARANDANO ALTO (Vaccinium corymbosum L.) CULTIVAR ELLIOTT.

 UNIVERSIDAD DE LA FRONTERA, FACULTAD DE CIENCIAS

- AGROPECUARIAS Y FORESTALES, Temuco Chile. Recuperado el 07 de 06 de 2025, de https://www.monografias.com/trabajos-pdf4/efecto-aplicacion-cppu-fruta-arandano-alto/efecto-aplicacion-cppu-fruta-arandano-alto.pdf
- España, C. J. (2025). *Inducción de organogénesis in vitro de explantes multinodales de arándano*. Universidad Nacional de Loja, Facultad Agropecuaria y de Recursos Naturales Renovables, Loja. Recuperado el 01 de 06 de 2025, de https://dspace.unl.edu.ec/server/api/core/bitstreams/d7aa9066-d1eb-4f0d-92b6-4a971f4e7deb/content
- Fichet, T. (14 de 05 de 2025). Cómo las fitohormonas regulan el crecimiento, floración y fructificación del arándano. Recuperado el 03 de 05 de 2025, de Redagrícola: https://redagricola.com/como-las-fitohormonas-regulan-el-crecimiento-floracion-y-fructificacion-del-arandano/
- García, V. I., Calderón-Zavala, G., & Arévalo-Galarza, M. d. (09 de 04 de 2024). Biorreguladores y bioestimulantes en el desarrollo, crecimiento y rendimiento de fruto de arándano Biloxi. *Revista fitotecnia mexicana*, 46(04). Recuperado el 01 de 05 de 2025, de https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802023000400383
- Gonzalez, M. (21 de 06 de 2018). El arándano, un fruto de reciente producción en el país.

 Recuperado el 01 de 05 de 2025, de https://www.revistalideres.ec/lideres/arandano-fruto-reciente-produccion-ecuador.html
- Google Earth . (2020). Recuperado el 05 de 06 de 2025, de https://earth.google.com/web/search/Atahualpa,+Pedernales,+Manab%c3%ad/@-0.02616813,-
 - 79.97057469,67.00681708a,588.61288978d,35y,209.67956667h,0t,0r/data=CiwiJg

okCVHJSMxOr6A_EXjcxA10YZA_GdkLkSq91PAIT0Mx24A_lPAQgIIAUICCABKDQj_____8BEAA

- Guzmán, E. (01 de 04 de 2025). *Biorreguladores en arándanos, una herramienta eficaz para combatir el estrés climático*. Recuperado el 04 de 06 de 2025, de https://blueberriesconsulting.com/biorreguladores-en-arandanos-una-herramienta-eficaz-para-combatir-el-estres-climatico/
- Huerta, M. V., & Jorquera, F. E. (15 de 06 de 2023). Efecto de la aplicación de CPPU sobre el rendimiento, calidad de fruta y clorofila foliar en arándano (Vaccinium corymbosum L.) cv. Blue Ribbon . *IDESIA*, 41(03). Recuperado el 02 de 05 de 2025, de https://www.scielo.cl/pdf/idesia/v41n3/0718-3429-idesia-41-03-35.pdf
- INTAGRI. (2017). El Cultivo de Arándano o Blueberry. *Serie Frutillas*(17). Recuperado el 04 de 05 de 2025, de https://www.intagri.com/articulos/frutillas/El-Cultivo-de-Ar%C3%A1ndano-o-Blueberry
- Ministerio de Agricultura y Ganadería. (27 de 09 de 2022). *Ecuador entra a competir en el mercado internacional de arándanos*. Recuperado el 04 de 06 de 2025, de https://www.agricultura.gob.ec/ecuador-entra-a-competir-en-el-mercado-internacional-de-arandanos/
- Montenegro, P. S., & Aguirre, R. A. (2024). "PLAN DE NEGOCIO PARA EL CULTIVO DE ARÁNDANO EN EL CANTÓN BIBLIÁN Y EXPORTACIÓN HACIA ALEMANIA".

 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL, ESCUELA DE POSTGRADO EN ADMINISTRACIÓN DE EMPRESAS, Guayaquil. Recuperado el 07 de 05 de 2025, de https://www.dspace.espol.edu.ec/xmlui/bitstream/handle/123456789/62473/T-15136.pdf?sequence=-1&isAllowed=y

- Mora, M. L., Toapanta, A. A., Tamayo, J. D., & Acosta, T. M. (2023). Efecto de diferentes tipos de sustratos y auxinas en el establecimiento ex vitro de segmentos nodales de arándano Var. Biloxi. *Revista Bionatura*, 08(03). Recuperado el 08 de 05 de 2025, de https://revistabionatura.com/files/2023.08.03.7.pdf
- Rivas, G. P. (24 de 10 de 2018). Uso de reguladores de crecimiento: ¿Cómo benefician la arándanos? cosecha de Recuperado el 05 de 06 de 2025, de https://blueberriesconsulting.com/uso-de-reguladores-de-crecimiento-comobenefician-la-cosecha-dearandanos/#:~:text=Tambi%C3%A9n%20resaltan%20el%20hecho%20de,por%20p arte%20de%20los%20mercados.
- Toapanta, B. O. (2019). *Pdot Parroquia Atahualpa 2014-2019*. Recuperado el 08 de 06 de 2025, de https://es.scribd.com/document/293162383/Pdot-Parroquia-Atahualpa-2014-
 - 2019#:~:text=En% 20verano% 20la% 20temperatura% 20oscila,en% 20invierno% 20al canza% 20los% 20340C.

ANEXOS

Anexos 1. Cultivo de arándanos

Anexos 2. Toma de datos

Anexos 3. Plantas de arándano antes y después de aplicar las fitohormonas

